

DESCRIPTION/Syllabi of Curricula/Module

Short Name of the University/Country code Date (Month / Year)	DSEA Sep 2020
TITLE OF THE MODULE	Code
Technologies for receiving and transmitting medical data	P11

Teacher(s)	Department
Coordinating: Serhii Dobriak, PhD	Department of Computer and Information
Others:	Technology (CIT)

Study cycle	Level of the module	Type of the module
(BA/MA)	(Semester number)	(compulsary/elective)
Bachelor	8 th semester (fourth year) for Bachelor	Elective

Form of delivery	Duration	Language(s)
(theory/lab/exercises)	(weeks/months)	
Lectures, Hands-on Lab Session	18 weeks	Ukrainian / English

Prerequisites								
Prerequisites:	Co-requisites (if necessary):							
the study of disciplines "Physics", "Electronics and computer circuitry", "Components of modern computer systems", "Distributed systems and parallel computing technologies".								

ECTS (Credits of the module)	Total student work hours	kload	Contac	et hours		Individual work hours			
7.5	225		14	44		81			
Aim of the module (course unit): competences foreseen by the study programme									
Students should be able to:									
Learning outcomes of mo	Teaching/learning methods (theory, lab, exercises)				Assessment methods ritten exam, oral exam, reports)				
Knowledge: - acquaintance with the positions of realization processing random samp in specific tasks; - Familiarization with different types of models of hypotheses, the different indel predictions, concernant and model constraints.	of methods of oles and their use the definition of , their use, testing ference between	notes availa	with the as well as ble fund at literature		Kno	owledge test			
Skills: - formation of theoretica acquiring practical skill and design of micro systems for medical use; - formation of the abili sensors and sensors netw use; - development of skill communication protocol	ty to use smarts vorks for medical s in the use of		res, practical ltation	work,		ive attendance on ures, lab reports			
Competences: Study the subject lite knowledge, working in g	-		res, practical ltation	work,	Lab	reports			

	Contact work hours							and tasks for vidual work	
Themes	Lectures	Consultations	Seminars	Practical work	Laboratory work	Placements	Total contact work	Individual work	Tasks
 Overview and Introduction. Micro and Nano scale systems. Introduction to Design of MEMS and NEMS. Materials for MEMS for medical use. 	4			4			8	4	Study exam/ Lab report
2. MEMS Fabrication technologies. Microsystem fabrication processes. Packaging.	4			4			8	4	Study exam/ Lab report
3. Microsensors. MEMS Sensors: Design of Acoustic wave sensors, resonant sensor, Vibratory gyroscope, Capacitive and Piezo Resistive Pressure sensors- engineering mechanics behind these Microsensors.	6			6			12	7	Study exam/ Lab report
4. Microactuators. Design of Actuators: Actuation using thermal forces, Actuation using shape memory Alloys, Actuation using piezoelectric crystals, Actuation using Electrostatic forces (Parallel plate, Torsion bar, Comb drive actuators), Micromechanical Motors and pumps for medical use.	6			6			12	7	Study exam/ Lab report
5. Nanosystems and Quantum Mechanics. Atomic Structures and Quantum Mechanics, Molecular and Nanostructure.	4			4			8	3	Study exam/ Lab report

				1		10	-	G (1
6. Smart sensors	6		6			12	7	Study
fundamentals. Basic								exam/ Lab
sensor technolog Sensor								report
systems. Smart sensors								
definitions.								
7. Smart sensors.	6		6			12	7	Study
Characteristics; Smart								exam/ Lab
sensors architectures.								report
Smart sensors buses and								
interfaces. Data								
acquisition methods for								
smart sensors. Smart								
sensors for electrical and								
non-electrical variables								
for medical use.								
8. Sensor networks	6		6			12	7	Study
architectures. Single node								exam/ Lab
architecture. Multi node								report
architectures. Design								
principles. Energy								
efficient topologies.								
Wired sensor networks								
and wireless sensor								
networks. Applications.								
9. Communication	6		6			12	7	Study
protocols. Phisical layer.	~		-				_	exam/ Lab
MAC protocols. Link								report
layer protocols.								report
Localization and								
positioning. Routing								
protocols. Transport layer.								
10. Data gathering and	6		6			12	7	Study
processing. Protocols for	Ŭ						-	exam/ Lab
gather information. Data								report
processing techniques.								- Port
11. Energy management.	6		6	1	1	12	7	Study
Energy consumption of	0					14		exam/ Lab
••• ×								report
sensor nodes. Techniques								report
for reducing consumption								
and communication								
energy for medical								
sensors.								
12. Security, reliability	6		6			12	7	Study
and fault-tolerance.								exam/ Lab
Security and privacy								report
protection. Reliability								_
support. Fault-tolerance.								
Sensor networks								
standards.								
13. Optical sensors for	6		6			12	7	Study
bio-medical applications.								exam/ Lab
Wave Optics. Optical								report
sensors for blood								I.
Page 4 of 6		I	•		•	•	•	

Page 4 of 6

parameter measurement. Photonic Biosensors.							
Biosensor Microsystems.							
Biosensors based on							
Photonic Crystals.							
Fluorescence based							
Sensors.							
Total	72		72		144	81	

Assessment strategy	Weight in %	Deadlines	Assessment criteria
Products and performance assessments	50%	During the semester	All labs should be passed
Written Exam	50%	Exam	The work is done completely without mistakes

Author	Year of issue	Title	No of periodical or volume	Place of printing. Printing house or internet link
Compulsory literature			1	
Northrop, Robert B.	2001	Introduction to dynamic modeling of neuro-sensory systems		Biomedical engineering series (CRC Press) IISBN 0-8493-0814-3
Andreas Inmann and Diana Hodgins	2013	Implantable sensor systems for medical applications		Woodhead Publishing Limited ISBN 978-1-84569-987-1
Andrea Baschirotto, Kofi A.A. Makinwa, Pieter Harpe	2013	Frequency References, Power Management for SoC, and Smart Wireless Interfaces		Springer ISBN 978-3-319-01079-3
Andrea Baschirotto, Kofi A.A. Makinwa, Pieter Harpe	2017	Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V & Advanced Node Analog Circuit Design		Springer ISBN 978-3-319-61284-3
Richard C. Dorf	2006	Sensors, Nanoscience, Biomedical		CRC Press

		Engineering, and Instruments	ISBN 0-8493-7346-8
Chong-Min Kyung, Hiroto	2017	Smart Sensors and	Springer
Yasuura, Yongpan Liu, Youn- Long Lin		Systems	ISBN 978-3-319-33200-0
Additional literature			
R.S. Muller	1991	Microsensors	IEEEPress
Alan S Morris, Reza Langri	2015	Measurement and Instruments: Theory and Applocation	Elsevier