DESCRIPTION/Syllabi of Curricula/Module

Short Name of the University/Country code Date (Month / Year)	DSEA
Date (Wohth / Tear)	Jan 2019
TITLE OF THE MODULE	Code
Technologies for receiving and transmitting medical data	P11

Teacher(s)	Department
Coordinating: Serhii Dobriak, PhD	Department of Computer and Information
Others:	Technology (CIT)

Study cycle	Level of the module	Type of the module
(BA/MA)	(Semester number)	(compulsary/elective)
Bachelor	8 th semester (fourth year) for Bachelors	Elective

Form of delivery	Duration	Language(s)
(theory/lab/exercises)	(weeks/months)	
Lectures, labs	15 weeks	Ukrainian / English

Prerequisites							
Prerequisites:	Co-requisites (if necessary):						
study of the disciplines "Physics", "Electronics and computer circuitry", "Componets of modern computer systems", "Technologies of distributed systems and parallel computing".	none						

ECTS (Credits of the module)	Total student work hours	Contact hours			Individual work hours		
4	120		52			68	
Aim of the m	odule (course unit)	: comp	etences	s foreseen by the	e stu	dy program	
Students should be able: - to unders in medicine; - to have analysis of nanostructure - to under software level and usage	stand the principle of the technical known d materials, micro stand the term "in stand the principle n protocols, data c to failure in medic	of oper owledg -and na atellige of buil collection ine.	e nece ano-sca nt sens ding a on and eachin me	of micro devices essary for com ale devices for sor"; know its sensor networ processing, en g/learning thods	s, m npute med char k; ki aergy	icrocircuits and their use er design, manufacture, ical use; racteristics, architecture, now the topics for sensor y management, security, Assessment methods written exam, oral exam,	
		(the	eory, la	b, exercises)		reports)	
Knowledge: - familarization with the principles of implement methods of processing and their use in specific to - familiarization with to different types of models of hypotheses, the different model predictions, appropriateness and model	entation of the random samples asks; he definition of , their use, testing ference between concepts of		•	with lecture fundamental ature	Kn	owledge test	
Skills: - formation of theoretical practical skills in modelin micro and nano scale sys- use; - developing of the abilits sensors and sensor networks use; - developing of the communication protocol		res, pr ltation	actical work, s		tive lecture attendance, o reports		
Competences: to study subject 1 knowledge, work in a gro	iterature, share oup		res, pr ltatios	actical work,	La	b reports	

		Contact work hours						Time and tasks for individual work		
Themes	Lectures	Consultations	Seminars	Practiacal work	Laboratory work	Placements	Total contact work	Individual work	Tasks	
1.Overview and Introduction. Micro and nano scale systems. Introduction to the design of MEMS and NEMS. MEMS materials for medical use.	2			2			4	5	Study exam/ Lab report	
2. MEMS manufacturing technologies. Microsystem manufacturing processes. Packaging.	2			2			4	5	Study exam/ Lab report	
3. Microsensors. MEMS sensors: design of acoustic wave sensors, resonant sensor, vibrating gyroscope, capacitive and piezo resistive pressure sensors - engineering mechanics behind these microsensors.	2			2			4	5	Study exam/ Lab report	
4. Microactuators. Design of actuators: actuation by thermal forces, actuation by alloys with shape memory, actuation by piezoelectric crystals, actuation by electrostatic forces (parallel plate, torsion bar, combined drive actuators), micromechanical motors and pumps for medical use.	2			2			4	5	Study exam/ Lab report	
5. Nano-systems and quantum mechanics. Atomic structures and quantum mechanics, molecular and nanostructure.	2			2			4	5	Study exam/ Lab report	

6. Basics of smart sensors. Basic sensor technologies. Sensor systems. Definitions of smart sensors.	2		2		4	5	Study exam/ Lab report
7. Smart sensors. Characteristics; smart sensor architectures. Smart sensor buses and interfaces. Data collection methods for smart sensors. Smart sensors for electrical and non-electrical variables for medical use.	2		2		4	5	Study exam/ Lab report
8. Sensor network architectures. Single node architecture. Multi node architectures. Design principles. Energy efficient topologies. Wired sensor networks and wireless sensor networks. Applications.	2		2		4	6	Study exam/ Lab report
9. Communication protocols. Physical layer. MAC protocols. Link layer protocols. Localization and positioning. Routing protocols. Transport layer.	2		2		4	6	Study exam/ Lab report
10. Data collection and processing. Protocols for collecting information. Data processing techniques.	2		2		4	6	Study exam/ Lab report
11. Energy management. Consumption of sensor node energy. Techniques for reducing energy consumption and linking in medical sensors.	2		2		4	5	Study exam/ Lab report
12. Security, reliability and fault-resistance. Security and privacy protection. Reliability support. Fault- resistance. Sensor network standards.	2		2		4	5	Study exam/ Lab report

13. Optical sensors for	2		2		4	5	Study
biomedical applications.							exam/ Lab
Wave optics. Optical							report
sensors for measuring							
blood parameters.							
Photonic biosensors.							
Biosensor microsystems.							
Biosensors based on							
photonic crystals.							
Fluorescence sensors.							
Total	26		26		52	68	

Assessment strategy	Weight in %	Deadlines	Assessment criteria
Performance assessment	50%	During the semester	All labs should be credited
Written exam	50%	Exam	The work is done completely without mistakes

Author	Year of issue	Title	No of periodical or volume	Place of printing. Printing house or internet link
Compulsory literature				
Northrop, Robert B.	2001	Introduction to dynamic modeling of neuro-sensory systems		Biomedical engineering series (CRC Press) IISBN 0-8493-0814-3
Andreas Inmann and Diana Hodgins	2013	Implantable sensor systems for medical applications		Woodhead Publishing Limited ISBN 978-1-84569-987-1
Andrea Baschirotto, Kofi A.A. Makinwa, Pieter Harpe	2013	Frequency References, Power Management for SoC, and Smart Wireless Interfaces		Springer ISBN 978-3-319-01079-3
Andrea Baschirotto, Kofi A.A. Makinwa, Pieter Harpe	2017	Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V &		Springer ISBN 978-3-319-61284-3

		Advanced Node Analog Circuit Design	
Richard C. Dorf	2006	Sensors, Nanoscience, Biomedical Engineering, and Instruments	CRC Press ISBN 0-8493-7346-8
Chong-Min Kyung, Hiroto Yasuura, Yongpan Liu, Youn- Long Lin	2017	Smart Sensors and Systems	Springer ISBN 978-3-319-33200-0
Additional literature			
R.S. Muller	1991	Microsensors	IEEEPress
Alan S Morris, Reza Langri	2015	Measurement and Instruments: Theory and Applocation	Elsevier