DESCRIPTION/Syllabi of Curricula/Module

Short Name of the University/Country code	DSEA
Date (Month / Year)	Jan 2019
TITLE OF THE MODULE	Code
Regenerative engineering and design of optimal structures	P11

Teacher(s)	Department						
Coordinating: Olexander Altukhov, PhD	Department of Computer and Information						
Others:	Technology (CIT)						

Study cycle	Level of the module	Type of the module
(BA/MA)	(Semester number)	(compulsory/elective)
Master	2nd semester (first year) for Masters	compulsory

Form of delivery	Duration	Language(s)
(theory/lab/exercises)	(weeks/months)	
Lectures, lab	8 weeks	Ukrainian / English

Prerequisites							
Prerequisites:	Co-requisites (if necessary):						
Human anatomy and physiology, mechanics of solids, structure of polymers, proteins, polysaccharides, metals and non metal elements, atomic bonding.							

ECTS (Credits of the module)	Total student workload hours	Contact hours	Individual work hours
5	150	54	96

Aim of the module (course unit): competences foreseen by the study programme

Students should be able:

- to learn new methods and tools of analysis, modeling, design and optimization;

- to effectively use tools and methods for analysis, design, calculation and testing in the process of developing biomedical products and services;

- to conduct research and observations on the interaction of biological, natural and artificial systems (prostheses, artificial organs, etc.);

- to identify, formulate and solve engineering problems related to the interaction between living and non-living systems.

	Teaching/learning	Assessment methods
Learning outcomes of module (course unit)	methods	(written exam, oral exam,
	(theory, lab, exercises)	reports)
Knowledge:	Work with the lecture	Knowledge test
- to understand the requirements for	notes as well as on the	
biomedical materials and products from	available fundamental	
them, physical and mechanical properties	subject literature	
of biomedical materials and to master		
methods for their identification and		
statistical processing.		
- to have basic ideas about bioinertness		
(biocompatibility), electroneutrality, non-		
toxicity, tribological characteristics of		
fatigue strength of materials used for		
implants.		
- to formulate tasks and perform strength		
calculations using CAE systems taking		
into account mathematical behavioral		
models for biomedical materials.		
- to have computer modeling skills in the		
design of biomedical equipment and		
implants in accordance with individual		
anatomical features of a person; to use this		
computer aided design system.		
Skills:		
-Ability to define, formulate and solve	Lectures Jahs	Active attendance of
problems of a constructive nature related	consultations	lectures, individual project
to the peculiarities of the patient's	consultations	and presentation
organism and appropriate medical		
remedies.		

- Ability to identify and use the most		
appropriate medical prosthetics for each		
individual case.		
- Ability to perform an analysis of patient		
characteristics, determine the type of		
required bioprosthesis and characteristics		
for optimal biocompatibility with the		
patient's body.		
- Ability to select the most appropriate		
materials and technologies of the		
production of bioprosthesis.		
- Ability to use biomedical modeling		
knowledge to prepare a bioprosthesis		
model for 3D printing or milling		
techniques.		
- Ability to develop and implement		
software for creating and manufacturing		
hardware and implant elements in		
MCAD/MCAM packages, integrate with		
these systems, and work with 3D printers.		
Competences:		
Ability to perceive, understand,		
summarize, retain and apply the		
knowledge gained.		
Ability to apply knowledge in practical		
situations and conduct research at the		
appropriate level.		
Knowledge and understanding of the		
subject area of professional activity.		
Ability to use information and		
communication technologies.		
Ability to find, process and analyze		
information from various sources.	Lectures, practical	Individual project and
Ability to learn new methods and tools for	training, consultations	presentation
analysis, modeling, design and	8,	1
optimization.		
Ability to effectively use tools and		
methods for analysis, design, calculation		
and testing when developing biomedical		
products and services.		
Ability to conduct research and		
observations on the interaction of		
biological, natural and artificial systems		
(prostheses, artificial organs, etc.).		
Ability to identify. formulate and solve		
engineering problems related to the		
Ability to effectively use tools and methods for analysis, design, calculation and testing when developing biomedical products and services. Ability to conduct research and observations on the interaction of biological, natural and artificial systems (prostheses, artificial organs, etc.). Ability to identify, formulate and solve engineering problems related to the		

interaction between living and non-living
systems.
Ability to apply basic computer software
knowledge to the automated design of
medical devices and systems.
Ability to understand the principles of
construction of modern automated control
systems for the production of medical
devices, their technical, algorithmic,
information and software support.

	Contact work hours							Time and tasks for individual work		
Themes	Lectures	Consultations	Seminars	Practiacl work	Laboratory work	Placements	Total contact work	Individual work	Tasks	
Regenerat	ive me	dicin	e and b	iotech	nology	in orth	opaedi	ics		
1.An overview of regenerative medicine. Scope of anatomy, physiology and basic terminology. Functional biomaterials for regenerative medicine. Introduction of the latest trends in smart natural biomaterials for regenerative medicine. Biocompatibility. Methods for testing and evaluating biocompatibility: In Vitro Testing, In Vivo Testing.	2				4		6	12	Study exam/ complete exercise	
2. Modality of dental implants: dentures, subperiosteal, endosteal; Type of blade, root form, packaging and preparation of dental implants. Cardio implants, Ophthalmic implants, Vitreous Implants.	2				4		6	12	Study exam/ complete exercise	
3. Bones and Joints: structure and function of skeleton, types of joints and their disorders. Orthopedic implants: Temporary fixation devices, fracture healing, restoraion of ligaments, ACL reconstruction	2				4		6	12	Study exam/ complete exercise	

with the use of biological and									
synthetic materials, joint									
replacements: total hip									
replacement, total knee									
replacement, bone regeneration									
with recirculating material.									
Mechanical d	lesign	metł	ods fo	or bio-	mecha	nical	engine	ering	
4 Virtual prototyping Virtual	2				4		6	12	Study exam/
prototyping is the basis of the	2				-		U	12	complete
e-Design paradigm Product									exercise
modeling and modeling by									
means of CAD/ CAE/ CAM									
integrated software									
5 Finite element modeling	2				4		6	12	Study exam/
Topological approach to	2				-		U	14	complete
decomposition Geometry									exercise
decomposition approaches									
Grid-based approach Mesh									
quality improvement									
Basics of dental implant									
construction Interface between									
bone and implant Assumptions									
about detailed geometry of									
bone and implant Material									
properties. Boundary									
conditions.									
6. Physical prototyping.	2				4		6	12	Study exam/
Systems of rapid prototyping							-		complete
(RP) based on solid freeform									exercise
fabrication (SFF) technology									
(Jacobs 1994) produce physical									
prototypes of the structure for									
design verification. Machining									
with the help of computer									
numerical control (CNC)									
provides manufacturing both									
functional parts and molds or									
dies for mass production.									
7. CNC machining. Machining	2				6		8	12	Study exam/
operations of virtual					-				complete
manufacturing: milling.									exercise
turning, and drilling, planning									
of the machining process.									
Contour generating for									
processing tools, visualization									
and simulation of machining									
operations and estimatation of									

machining time. Convertion to CNC codes (M-codes and G- codes) for the production of functional parts as well as stamps or molds for production.						
8. 3D printing techniques in regenerative medicine. Definition and principles of 3D printing. 3D bioprinting technologies: inkjet bioprinting, pressure-based bioprinting, laser-based bioprinting, solenoid valve- based printing, acoustic inkjet printing. Biopriting for skin. Organic printing. Printing on cells, stem cells. 3D printing for orthopedic implants.	4		6	10	12	
Total of the basic part	18		36	54	96	

Assessment strategy	Weight in %	Deadlines	Assessment criteria
Written theory exam	40%	during the semester / exam	good response to the questions
Practical exam on a computer	60%	during the semester / exam	the work is done completely without mistakes or minor errors

Author	Year of issue	Title	No of periodical or volume	Place of printing. Printing house or internet link
Compulsory literature				
Atala, Anthony; Murphy, Sean V	2017	Regenerative medicine technology: on-a-chip applications for disease modeling, drug discovery and personalized medicine		CRC Press ISBN: 978-1-4987-1191- 3
Srinivas D. Narasipura, Michael R. King	2012	Engineering Biomaterials for Regenerative Medicine: Novel Technologies for Clinical Applications		Springer-Verlag New York ISBN: 978-1-4614-1079- 9

Kursad Turksen	2015	Bioprinting in	Springer International		
		Regenerative Medicine	Publishing		
			ISBN: 978-3-319-21385-		
			9		
Lijie Grace Zhang, John P	2015	3D Bioprinting and	Academic Press		
Fisher,Kam Leong		Nanotechnology in	ISBN: 9780128006641		
		Tissue Engineering and			
		Regenerative Medicine			
Kuang-Hua Chang	2015	e-Design. Computer-	Elsevier		
		Aided Engineering	ISBN: 978-0-12-382038-		
		Design	9		
Jianping Geng, Weiqi Yan,	2008	Application of the	Springer		
Wei Xu		Finite Element Method	ISBN 978-3-540-73763-		
		in Implant Dentistry	6		
Additional literature					
Gerald Brandacher	2015	The Science of	Humana Press		
		Reconstructive	ISBN: 978-1-4939-2070-		
		Transplantation	9		
Melba Navarro, Josep A.	2011	Nanotechnology in	Humana Press		
Planell		Regenerative	ISBN: 978-1-61779-387-		
		Medicine: Methods	5		
		and Protocols			