МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ, МОЛОДЕЖИ И СПОРТА УКРАИНЫ

ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ

Составитель Н.В.Климченкова

АВТОМАТИЗАЦИЯЭЛЕКТРОМЕХАНИЧЕСКИХ СИСТЕМ

УЧЕБНОЕ ПОСОБИЕ

для самостоятельной работы для студентов дневной и заочной форм специальности ЭСА

Утверждено на заседании методического семинара кафедры ЭСА Протокол № 20 от 24.02. 2012

Оглавление

Предисловие	4
1. Выбор электродвигателя	5
1.1. Основы механики электропривода	6
1.1.1. Построение нагрузочных диаграмм	9
1.2. Задачи выбора электродвигателя	12
1.3. Нагревание и охлаждение электродвигателей	15
1.4. Номинальные режимы работы электродвигателей	18
1.5. Расчет мощности и выбор электродвигателя для	21
длительного режима работы	
1.6. Расчет мощности и выбор электродвигателя для повторно-	25
кратковременного и кратковременного режимов работы	
2. Выбор коммутационной аппаратуры	27
2.1. Расчет токов плавких вставок предохранителей	27
2.2. Выбор аппаратов управления и защиты для	28
электродвигателей	
Используемая литература	33
Приложение 1	34
П.1.1. Аппараты управления	34
П.1.2. Силовые коммутационные аппараты с ручным	35
управлением	
П.1.3. Автоматические выключатели	37
П.1.4. Контакторы и пускатели	39
П.1.5 Реле	48
Приложение 2. Синхронные электрические двигатели	54
Приложение 3. Асинхронные двигатели	56
Приложение 4. Электрические двигатели постоянного тока	84
Приложение 5.	99
П.5.1. Предохранители	99
П.5.2. Резисторы	102
Приложение 6. Варианты заданий на самостоятельную работу	110
Приложение 7. Пример выполнения самостоятельной работы	113

Предисловие

Энергетическую основу производства составляет электрический привод, технический уровень которого определяет эффективность функционирования технологического оборудования. Развитие электрического привода повышения идет ПО ПУТИ экономичности И надежности дальнейшего за счет совершенствования двигателей, аппаратов, преобразователей, цифровых средств управления. Прогрессивным аналоговых И явлением в этом процессе является применение микропроцессоров и микро ЭВМ, позволяющих существенно расширить функциональные возможности автоматизированного электропривода и улучшить его технические и экономические характеристики.

Расширение и усложнение выполняемых электроприводом функций, применение в нем новых средств управления требуют высокого уровня подготовки специалистов, занятых его проектированием, монтажом, наладкой и эксплуатацией. Они должны хорошо знать назначение и элементарную базу отдельных узлов электропривода, определять его экономические показатели выбирать его элементы.

Методические указания составлены для выполнения самостоятельной работы студентами специальности ЭСА.

Они содержат краткие теоретические положения и необходимый справочный материал для расчетов по выбору электрического двигателя и коммутационной аппаратуры.

Методические указания разработаны применительно к курсу «Автоматизация электромеханические систем».

1. Выбор электродвигателя

При проектировании новых электроприводов или модернизации существующих выбирают такие серийно выпускаемые двигатели, которые обеспечивали бы наилучшее выполнение на них функций и соответствовали бы условиям работы электропривода и рабочей машины. Их паспортные данные (мощность, напряжение, ток, частота и т.д.) должны быть близки к расчетным при работе данного электропривода, а их конструктивное исполнение соответствовать способу размещения в электроприводе и условиям окружающей среды.

Основным элементом любого электропривода является двигатель. Именно его данными определяются выбор других элементов электропривода — преобразователей, коммутационной аппаратуры, резисторов, элементов защиты и т.п. По этой причине расчету мощности и выбору двигателя уделяется большое значение.

Основным требованием при выборе электродвигателя является его соответствие условиям технологического процесса рабочей машины. Задача выбора состоит в поиске такого двигателя, который бы обеспечивал заданный технологический цикл рабочей машины, соответствовал условиям окружающей среды и компоновки с рабочей машиной и имел допустимый нагрев.

Выбор двигателя недостаточной мощности может привести к нарушению заданного цикла, снижению производительности рабочей машины. При этом будет иметь место также его повышенный нагрев, ускоренное старение изоляции и преждевременный выход двигателя из строя, что вызовет останов машины.

Недопустимым является также использование двигателей завышенной мощности, так как при этом не только повышается первоначальная стоимость электропривода, но и увеличиваются потери энергии за счет снижения КПД двигателя. Для асинхронного и вентильного электроприводов, кроме того, снижается коэффициент мощности. Таким образом, обоснованный выбор электродвигателя является весьма важной задачей, во многом определяющим техникоработы комплекса «электроприводэкономические показатели рабочая машина».

Выбор электродвигателя производится обычно в такой последовательности: расчет мощности и предварительный выбор двигателя; проверка выбранного двигателя по условиям пуска,

перегрузки и нагреву.

Если выбранный двигатель удовлетворяет условиям проверки, то на этом выбор двигателя заканчивается. Если же двигатель не удовлетворяет условиям проверки, то выбирается другой двигатель (как правило, большей мощности) и проверка повторяется.

1.1. Основы механики электропривода

Работа системы электропривод - рабочая машина связана с действием различных сил и их моментов. Одни из них приводят систему в движение и называются вращающими $M_{\text{вр}}$, другие тормозят ее и называются силами или моментами сопротивления M_{c} .

Основным уравнением, описывающим характер движения электропривода, является известное из теоретической механики уравнение моментов, действующих на валу электродвигателя:

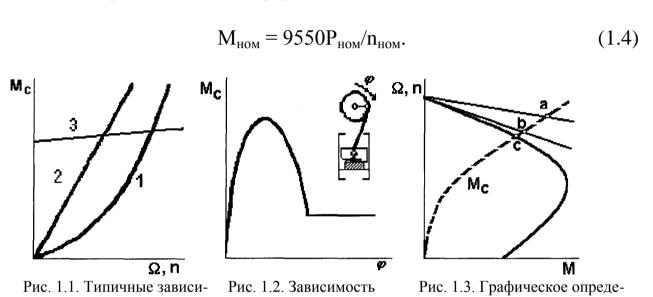
$$M_{BP} = M_C + J \frac{d\Omega}{dt}.$$
 (1.1)

Из этого уравнения следует, что электромагнитный момент двигателя уравновешивает момент статического сопротивления механизма и динамический момент $Jd\Omega/\Box dt$, возникающий при изменениях скорости инерционных масс, момент инерции которых равен J.

В электроприводе двигатель может работать в двигательном и тормозном режимах, развивая на валу соответственно вращающий или тормозящий электромагнитный момент.

Момент и механическая мощность, развиваемые любой машиной и электродвигателем, связаны соотношением

$$P = M\Omega, (1.2)$$


где Р и М соответственно мощность и момент;

 Ω - угловая скорость вала двигателя.

Обычно в расчетах мощность двигателя выражают в кВт, а вместо угловой скорости $\Omega = 2\pi n/60 = n/9,55$ пользуются частотой вращения n, об/мин. Тогда выражение (1.2) примет вид

$$P = Mn/9550.$$
 (1.3)

Нормальная безаварийная работа двигателя возможна только тогда, когда его действительный режим не превышает условий номинального режима, для работы в котором электродвигатель Номинальный режим характеризуется построен на заводе. определенными мощностью, напряжением, током, частотой вращения и другими параметрами. Эти величины, называемые номинальными, указывают на щитке и в паспорте, приводят в каталогах на Номинальный момент электродвигатели. двигателя обычно не указывают. Его вычисляют по номинальной мощности Р ном и частоте вращения $n_{\text{ном}}$ из формулы (1.3):

Рабочие механизмы создают моменты сопротивления, которые зависят от скорости. На рис. 1.1 приведены три типичные зависимости $M_c(\Omega)$ для некоторых механизмов.

 $M_c(\varphi)$ кривошипного ме-

ханизма

ление установившейся часто-

ты вращения двигателя с механизмом, момент сопротив-

ления котого задан

мости $M_c(\Omega \square)$ механизмов

Момент сопротивления вентиляторов, центробежных насосов, компрессоров, центрифуг, гребных винтов и других механизмов пропорционален примерно квадрату частоты вращения (кривая 1). Такие механизмы называют иногда механизмами с «вентиляторным моментом». При пуске «вентиляторный момент» сопротивления мал, поэтому от двигателя не требуется большого момента.

Момент сопротивления генератора постоянного тока, якорь которого замкнут на резистор, а ток возбуждения постоянный, пропорционален частоте вращения (прямая 2 на рис. 1.1). В этот

режим двигатель переводят при динамическом торможении.

У подъемных кранов, лебедок, поршневых насосов при подъеме воды на постоянную высоту, транспортеров, конвейеров с постоянной передвигаемой массой, строгальных станков и других механизмов момент практически не зависит от частоты вращения (прямая 3 на рис. 1.1). Для пуска и ускорения таких механизмов двигатель должен развивать момент, значительно больший их момента сопротивления.

Сведения о моменте сопротивления механизма или о связи мощности производительностью механизма приводятся технической инструкции к нему, справочниках или рассчитываются технологами. Однако не всегда момент сопротивления удобно выражать в функции скорости. В ряде механизмов он зависит от пути движения. Например, в поршневом компрессоре, ножницах для резки металла момент является функцией угла поворота кривошипа (рис. 1.2). Иногда момент изменяется вследствие различных свойств обрабатываемых веществ и закономерность его изменения нельзя НИ аналитически, НИ графически (камнедробилки, выразить глиномешалки, шаровые мельницы, дефибреры). В этих случаях в расчетах приходится исходить из некоторых средних и пиковых моментов, определяемых экспериментально. Однако ограничиться рассмотрением трех простейших зависимостей $M_c(\Omega \square)$ механизмов, приведенных на рис. 1.1.

Каждый электродвигатель обладает свойством саморегулирования И развивает момент, равный моменту сопротивления скорость механизма. При ЭТОМ двигателя Ee устанавливается постоянной. значение легко определить $M_c(\Omega \square)$ графически, если зависимость механизма (например, вентилятора – кривая 1 на рис. 1.1) построить в осях $\Omega \square M_c$) на графике механической характеристики $\Omega \square M$) в одном масштабе. На приведены характеристики трех 1.3 видов двигателей вентилятора. Точки пересечения характеристик (a, g c) соответствуют установившимся скоростям валов двигателей.

Механическая характеристика двигателя и механизма позволяет определить не только скорость, момент, мощность, но и диапазон регулирования скорости $D = \Omega_{\text{max}}/\Omega_{\text{min}}$, если ее нужно регулировать двигателем. Эта характеристика необходима также для определения времени перехода от одной скорости к другой, например, при пуске, останове, что связано с вопросами производительности, экономики.

Изменение нагрузки, включение и выключение двигателя, введение резисторов, изменение напряжения и т.д. приводит к ускорению или замедлению привода и появлению динамического момента $\pm Jd\Omega/dt$, который нагружает либо разгружает вал электродвигателя. Чтобы судить о возможных перегрузках двигателя (по моменту и мощности) во времени, нужно знать, как изменяется его момент, мощность во времени, т.е. иметь нагрузочную диаграмму электропривода.

1.1.1. Построение нагрузочных диаграмм

Нагрузочными диаграммами называют графические зависимости от времени, момента и мощности электропривода (иногда и тока двигателя).

Рассмотрим построение нагрузочной диаграммы электропривода подъемника (рис. 1.4), кинематическая схема которого обеспечивает уравновешивание противовесом Пр момента от каната и кабины К без груза G. Двигатель Дв через редуктор Ред вращает шкив R.

Верхняя на рис. 1.4 — диаграмма скорости $\Omega(t)$ привода, заданная производительностью и механическим оборудованием подъемника для одного цикла подъема. В нее входят времена ускорения t_1 , подъема с постоянной скоростью t_2 , замедления t_3 и паузы t_4 перед циклом опускания кабины.

Следующий график $M_c(t)$ — приведенный к валу двигателя суммарный момент статического сопротивления M_c , создаваемый грузом (M_{c1}) и редуктором (M_{c2}) : $M_c = M_{c1} + M_{c2}$. При подъеме и опускании груза M_c обычно не одинаков.

Приведение статических моментов сопротивления механизмов к валу двигателя производится на основе закона сохранения энергии движения:

поступательного (с учетом КПД передачи η_{π})

$$M_{c1}\Omega\eta_{\Pi} = Gv \tag{1.5}$$

и вращательного

$$M_{c2}\Omega\eta_p = M_{cp}\Omega_p, \qquad (1.6)$$

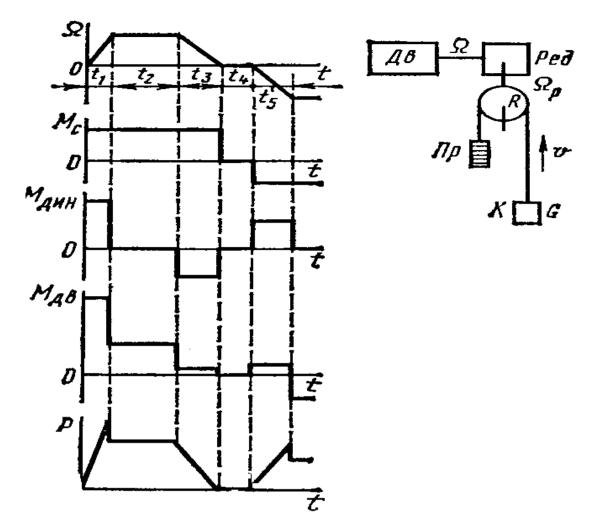


Рис. 1.4. К построению нагрузочной диаграммы электропривода подъемника

где G – вес, сила тяжести груза;

v – линейная скорость;

 η_p – КПД редуктора;

 $\Omega_{\rm p}$ – скорость вала редуктора.

Далее строим график динамических моментов $M_{\text{дин}}(t) = Jd\Omega \square dt$ при ускорении и замедлении, где J — также приведенный к валу двигателя суммарный момент инерции движущихся масс ($J_{\text{дв}}$ — ротора, J_p — редуктора и шкива, J_G — груза); $J = J_{\text{дв}} + J_1 + J_2$. Значение $J_{\text{дв}}$ берут из каталога для двигателя ориентировочной мощности ($P_{\text{ном}} \approx 1,2 Gv \times 10^{-3}$, кВт) и скорости ротора $\Omega \square$.

Приведение моментов инерции J_p — вращающихся и J_G поступательно движущихся масс производится на основе закона сохранения кинетической энергии:

$$0.5J_1\Omega^2\square=\square\square 5J_p\Omega_{p}^2, \quad J_1=J_p(\Omega_\square/\Omega)^2,$$

$$\square$$

$$0.5J_2\Omega^2=0.5Gv^2/g, \quad J_2=\frac{Gv^2}{g\Omega^2},$$

$$(1.7)$$

где G — сила тяжести, вес груза, H; g — ускорение, равное 9.8 m/c^2 . Таким образом,

$$J = J_{_{\text{\tiny AB}}} + J_{_{\text{\tiny p}}} \frac{\Omega_{_{\text{\tiny p}}}^2}{\Omega^2} + \frac{Gv^2}{g\Omega^2}. \tag{1.8}$$

В расчетах электроприводов часто используют не момент инерции J массы m c радиусом ρ , а маховый момент GD^2 , измеряемый в Hm^2 :

$$J = m\rho^2 = \frac{G}{g} \left(\frac{D}{2}\right)^2 = \frac{GD^2}{4g},$$
 (1.9)

где D – приведенный диаметр инерции, м.

Алгебраическая сумма статического и динамического моментов в каждый момент времени дает момент $M_{\rm дв}(t)$, который должен развивать двигатель. Из графика $M_{\rm дв}(t)$ видно, каким должен быть пусковой и максимальный (перегрузочный) моменты. На рис. 1.4 они оказались одинаковыми.

Диаграмма мощности двигателя P(t) получена перемножением момента двигателя на его скорость: $P = M\Omega = f(t)$. Этот пример показал построение нагрузочных диаграмм электродвигателя, момент и мощность которого изменяются в процессе работы. По ним определяют номинальную мощность выбираемого двигателя для электропривода и сравнивают его пусковой и максимальный моменты с заданной диаграммой.

1.2. Задачи выбора электродвигателя

В задачу выбора электродвигателя входят:

- выбор рода тока и номинального напряжения;
- выбор номинальной частоты вращения;
- выбор конструктивного исполнения;
- определение номинальной мощности и выбор соответствующего ей двигателя по каталогу.

В производственных условиях не всегда требуется решать весь комплекс этих вопросов. Часть их бывает задана: род тока, напряжение, частота вращения. Основное значение при этом имеет правильное определение мощности и конструктивного типа двигателя.

выбора Прежде электродвигателя, чем решать задачу необходимо четко представить себе работу механизма, для которого его подбирают: будет ли двигатель с механизмом работать длительно или кратковременно, с постоянной или регулируемой скоростью, будет ли изменяться (и как) момент сопротивления и мощность при работе. Ответы на эти вопросы может дать построение нагрузочных диаграмм. выбора перечисленной Далее решают вопросы В последовательности.

<u>Выбор рода мока и напряжения двигателя.</u> В основу этого выбора положены экономические соображения. Электродвигатели имеют высокую стоимость, так как являются сложными изделиями, в которых используются ценные электротехнические материалы, рассчитанные на длительный срок службы (20 лет). Поэтому выбор начинают с «примерки» пригодности для привода самых простых и дешевых двигателей — трехфазных асинхронных с К3-ротором и до самых сложных и дорогих — двигателей постоянного тока.

Выбор рода тока электродвигателя определяет и выбор его напряжения, обычно номинального которое берут равным напряжению источника электропитания цеха, завода, стройплощадки (чаще всего это трехфазная сеть с основным напряжением 380.220 В). Повышение или понижение напряжения для двигателей с помощью трансформаторов, применение выпрямителей двигателей ДЛЯ постоянного тока приводит увеличению К затрат электрооборудование.

Выбор номинальной скорости двигателя. Высокая скорость

электродвигателя позволяет уменьшить его габаритные размеры, массу и стоимость. Рабочие механизмы, наоборот, чаще требуют пониженных скоростей. Для согласования скоростей двигателя и механизма ставят редуктор, что удорожает электропривод. Вопрос о рациональном соотношении двигатель-редуктор решается конструктором при проектировании механизма.

<u>Выбор конструктивного исполнения двигателя.</u> Конструктивное исполнение современных серий электродвигателей учитывает три фактора: защиту от воздействия окружающей среды, обеспечение охлаждения и способ монтажа.

В табл. 1 представлена примерная последовательность выбора типа электродвигателя в зависимости от его назначения.

Таблица 1.1 Примерная последовательность выбора типа электродвигателя

Тип двигателя	Назначение	
Асинхронный с КЗ-ротором	Для нерегулируемого привода, не	
нормального	требующего больших пусковых	
Исполнения	моментов, при	
	P≤ 100 кВт	
Асинхронный с глубокопазным КЗ-	То же, если требуется большие	
ротором	пусковые моменты	
или с двойной беличьей клеткой		
Асинхронный с контактными	Частые пуски при больших пусковых	
кольцами	моментах и небольших токах,	
	регулирование скорости (реостатное	
	регулирование неэкономичное)	
Синхронный	Для нерегулируемого привода в	
	длительном режиме, регулирование	
	соѕφ (при Р≥100 кВт, СД	
	экономичнее АД)	
Постоянного тока	Регулирование скорости в широком	
	диапозоне, обеспечение хороших	
	пусковых качеств, перегрузочной	
	способности	

По способу защиты от воздействия окружающей среды электродвигатели изготавливают в защищенном, закрытом и

взрывонепроницаемом исполнениях.

Защищенные от попадания мелких предметов и капель двигатели предназначены для работы в сухих непыльных помещениях.

Закрытые двигатели устанавливают в помещениях с повышенной влажностью, атмосферой, загрязненной пылью с металлическими включениями, парами масла или керосина.

Взрывозащищенные двигатели имеют корпус, способный выдержать взрыв газа внутри машины и исключающий при этом выброс пламени в окружающую среду. Они предназначены для работы во взрывоопасных помещениях (шахтах). На крышке коробки выводов этих двигателей отлит рельефный знак РВ — рудничный взрывобезопасный или ВЗГ — взрывобезопасный в газовой среде. Без этих знаков применение двигателей во взрывоопасных условиях запрещено. Нельзя также взамен закрытого двигателя устанавливать защищенный.

По способу охлаждения различают двигатели с естественным охлаждением, самовентиляцией внутренней или наружной и посторонним продувом (принудительно).

По способу монтажа имеются двигатели с горизонтальным расположением вала и станиной на лапах, с вертикальным расположением вала и фланцем на нижнем щите и т.д. Выбираемый двигатель должен иметь тот же способ установки, крепления и соединения с механизмом, что и заменяемый.

Выбор двигателя по мощности. Завершающим этапом является определение номинальной мощности двигателя и выбор по ней в каталоге подходящего двигателя. Однако номинальную мощность просто определить только при длительной работе с постоянной нагрузкой, которую и принимают за номинальную. В подавляющем большинстве случаев момент, мощность и ток двигателя изменяются во времени. Нагрузочные диаграммы двигателей многих механизмов включают периоды работы и пауз. При подобной переменной нагрузке двигатель должен удовлетворять условиям допустимого максимальным нагрева, обладать моментом, достаточным ДЛЯ преодоления возможных кратковременных перегрузок и при пуске с нагрузкой избыточный пусковой иметь момент ДЛЯ обеспечения разгона привода.

1.3. Нагревание и охлаждение электродвигателей

Работа электродвигателя сопровождается потерей части энергии, которая превращается в теплоту. Мощность потерь

$$\Delta P = P(1/\eta - 1) \tag{1.10}$$

тем больше, чем большую мощность Р развивает двигатель на валу и чем ниже его КПД. Следовательно, с ростом нагрузки температура двигателя будет возрастать и может достигнуть опасных значений.

По нагревостойкости изоляционные материалы подразделяют на несколько классов. Так, изоляция класса A (пропитанные волокнистые материалы) допускают температуру нагрева до 105^{0} C; класса B (материалы на основе слюды, асбеста и стекловолокна с пропиткой) – до 130^{0} C, а те же материалы с кремнийорганическими связующими пропитками – до 180^{0} C (класс H).

Указанные рабочие температуры установлены исходя из срока службы электродвигателей 15-20 лет при номинальной нагрузке. При нагрузке 1,5 номинальной двигатель выходит из строя уже через 3 часа.

Температура двигателя зависит не только от его нагрузки, но и от температуры охлаждающей среды. При расчетах ее принимают $+40^{0}$ C. между равной температурами Разность двигателя охлаждающей среды называют превышением температуры или температурой перегрева и обозначают τ^{\Box} . Например, для широко распространенной изоляции допустимая температура класса A перегрева составляет 65°C.

При процессов расчетах нагревания И охлаждения электродвигателей электрическую машину упрощенно рассматривают как однородное тело, которое равномерно нагревается и излучает теплоту в окружающую среду всей поверхностью. Перед работой двигатель имеет температуру окружающей среды, поэтому вся выделенная в нем теплота идет на повышение температуры двигателя соответственно теплоемкости С, Втс/град. Когда его выше температуры температура становится среды, начинается процесс теплоотдачи в окружающую среду. При постоянной нагрузке температура некоторое время двигателя через установившегося значения, при котором вся теплота, выделяющаяся в двигателе, отдается в окружающую среду. Наступает тепловое равновесие.

Уравнение теплового баланса электродвигателя при постоянной нагрузке имеет вид

$$\Delta Pdt = Cd\tau + A\tau dt, \qquad (1.11)$$

где $d\tau$ - перегрев, град., соответствующий элементу времени dt, за который выделяется энергия $\Delta P dt$; A - теплоотдача при нагревании, $B\tau/$ град.

С момента наступления теплового равновесия повышение температуры двигателя прекращается ($d\tau = 0$). Установившаяся температура перегрева определяется выражением

$$\tau_{\text{VCT}} = \Delta P/A. \tag{1.12}$$

Каждой нагрузке двигателя соответствует своя установившаяся температура. Очевидно, двигатель можно нагружать только такой мощностью, при которой установившийся перегрев его изоляции не превышает максимально допустимого значения. Эту мощность и называют номинальной.

Из выражения (1.12) видно, что установившийся перегрев возрастает с уменьшением теплоотдачи А. Чем лучше охлаждается двигатель при работе, тем ниже установившийся перегрев. Поэтому двигатели снабжают вентиляторами и для увеличения охлаждающей поверхности применяют ребристые корпуса.

Разделим уравнение (1.11) на Adt и с учетом (1.12) перепишем его в виде

$$T_{\text{M}} \frac{d\tau}{dt} + \tau = \tau_{\text{ycr}}, \tag{1.13}$$

где $T_{u} = C/A - постоянная времени нагревания.$

Решение этого линейного дифференциального уравнения дает закон изменения температуры двигателя во времени:

$$\tau = \tau_{\text{VCT}} (1 - e^{-t/T_{\text{II}}}) + \tau_{\text{Hay}} e^{-t/T_{\text{II}}}, \qquad (1.14)$$

где $\tau_{\text{нач}}$ – начальное превышение температуры, с которым двигатель

начинает работать.

Если двигатель начинает работу в «холодном» состоянии, то $\tau_{\mbox{\tiny Haч}}=0$ и

$$\tau = \tau_{\text{VCT}} (1 - e^{-t/T_{\text{II}}}). \tag{1.15}$$

На рис. 1.5 приведены экспоненциальные кривые нагревания электродвигателя при постоянной нагрузке. Кривые 1 и 2 соответствуют работе двигателя с «холодного» состояния ($\tau_{\text{нач}}=0$) при малой (1) и большой (2) нагрузках, кривая 3 — работе, когда двигатель уже имел начальное превышение температуры $\tau_{\text{нач}}=\tau_{03}$.

Кривую 3 можно рассматривать как превышение температуры двигателя в случае, если температура окружающей среды повысилась на τ_{03} по сравнению с кривой 2. Установившаяся температура достигается практически за время $(3 \div 5)$ $T_{\rm u}$.

Кривые нагревания и охлаждения являются экспонентами. Установившаяся температура достигается практически за время $(3 \div 5)$ $T_{\text{и}}$ (погрешность 5 и 0.5% соответственно).

После отключения двигателя от сети выделение теплоты в нем

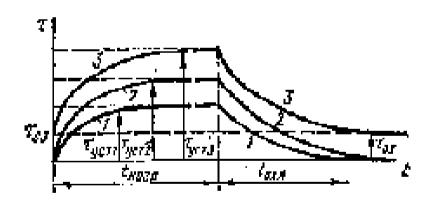


Рис. 1.5. Кривые нагревания и охлаждения электродвигателя

прекращается: $\Delta P = 0$, $\tau_{ycr} = 0$, и выражение (1.14) для процесса охлаждения примет вид

$$\tau = \tau_{\text{Hay}} e^{-t/T}_{\text{OXJ}}, \tag{1.16}$$

где $T_{\text{охл}} = C/A_{\text{охл}}$; $A_{\text{охл}}$ – теплоотдача при охлаждении.

Кривые охлаждения двигателя приведены на рис. 1.5. Время охлаждения электродвигателя до установившейся температуры или до температуры окружающей среды $t_{\text{охл}} = (3 \div 5) T_{\text{охл}}$. Интенсивность охлаждения двигателя зависит от способа вентиляции и его скорости. В неподвижном двигателе, с самовентиляцией, условия охлаждения значительно хуже, чем во вращающемся. Поэтому постоянная охлаждения $T_{\text{охл}}$ здесь в 2-3 раза больше $T_{\text{и}}$. При эксплуатации регулярные продувки и очистка поверхности двигателя от пыли увеличивают теплоотдачу и обеспечивают наиболее полное его использование.

1.4. Номинальные режимы работы электродвигателей

При рассмотрении законов нагревания И охлаждения электродвигателей предполагалось, что нагрузка двигателя продолжительное время неизменна, поэтому неизменен И установившийся предельный перегрев туст. В действительности двигателя может изменяться различным образом значению. Кроме того, двигатель может отключаться на некоторое время.

Для учета разнообразных условий работы электродвигателя и правильного определения его мощности рассчитывают и строят нагрузочные диаграммы M(t), P(t) (см. рис. 1.4) или I(t). По виду нагрузочной диаграммы определяют режим работы двигателя. стандартизированы. Различают три основных режима: (S2)(S1), кратковременный И повторнократковременный (S3). Для каждого из них условия нагревания и охлаждения различны.

Длительный режим. Длительным называют режим, в котором температура электродвигателя достигает установившегося значения.

Различают длительный режим с постоянной и переменной нагрузками. Длительно с постоянной нагрузкой работают вентиляторы, насосы, компрессоры, некоторые транспортеры, текстильные станки. Нагрузочная диаграмма для этого режима приведена на рис. 1.6, а.

Длительно с переменной нагрузкой (рис. 1.6,б) работают поршневые компрессоры, прокатные станы, токарные, сверлильные, фрезерные станки и др.

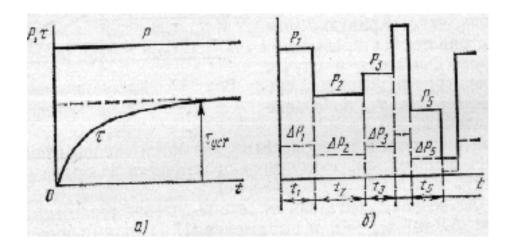


Рис. 1.6. Диаграммы P(t) и □(t) двигателя в длительном режиме с постоянной (a) и переменной (б) нагрузками

На щитке электродвигателя, предназначенного для длительной работы, номинальный режим обозначают сокращенным словом «Длит.» Или символом \$1.

Кратковременный режим. В этом режиме электродвигатель работает ограниченное время, в течение которого температура не достигает установившегося значения. Паузы в работе настолько велики, что двигатель успевает полностью охладиться. Нагрузочная диаграмма и перегрев двигателя в кратковременном режиме показаны на рис. 1.7.

В режиме кратковременной нагрузки работают вспомогательные приводы станков, разводных мостов, шлюзов, задвижек трубо- и газопроводов и других механизмов. На щитке электродвигателя кратковременного режима указывается время работы при номинальной мощности: 30, 60 и 90 мин и символ S2. Для универсального применения двигатели кратковременного режима крупными сериями не выпускаются.

Повторно-кратковременный В режим. ЭТОМ режиме чередуются кратковременные работы регулярно периоды кратковременными периодами пауз, причем в период нагрузки температура двигателя не достигает установившегося значения, а в период паузы (отключения) она не успевает опуститься до уровня среды. Графики охлаждающей температуры такого приведены на рис. 1.8. Перегрев электродвигателя изменяется по пилообразной ломаной линии, состоящей из отрезков нагревания и охлаждения. При многократном повторении циклов перегрев колеблется около некоторого среднего значения τ_{cp} .

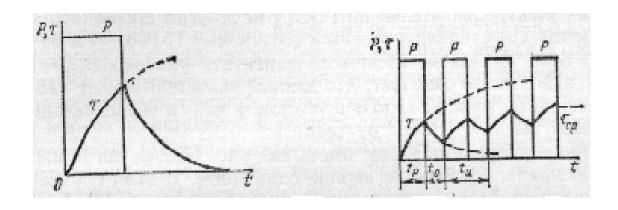


Рис. 1.7. Диаграммы P(t) и τ(t) двигателя в кратковременном режиме работы

Рис. 1.8. Диаграммы P(t) τ(t) двигателя в повторнократковременном режиме работы

Типичным примером работы в повторно-кратковременном режиме являются электроприводы подъемных кранов, а также электропривод большинства металлорежущих станков.

Электропромышленность выпускает специальные крановые электродвигатели, предназначенные ДЛЯ работы В подъемнотранспортных устройствах. На щитке такого двигателя в графе **S**3 «режим работы» указывается символ И относительная продолжительность включения ПВ% (обозначаемая также є):

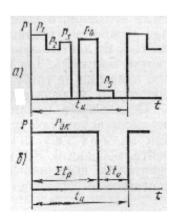


Рис. 1.9. Реальная (a) и идеализированная (б) диаграммы P(t) двигателя в повторно-кратковременном режиме

$$\Pi B\% = \frac{t_p}{t_p + t_{\Pi}} 100 = \frac{t_p}{t_{\Pi}} 100, \qquad (1.17)$$

где $t_{\rm p}$ — время работы; $t_{\rm n}$ - продолжительность паузы; $t_{\rm q}$ — продолжительность цикла.

Продолжительность цикла повторно-кратковременного режима для крановых электродвигателей по ГОСТу не должна превышать 10 мин.

Значение ПВ стандартизированы и составляют 15, 25, 40 и 60 %. Например, если на щитке кранового двигателя указано $P_{\text{ном}} = 11 \text{ кВт}$ при ПВ 40%, то это означает, что данный двигатель может работать с номинальной нагрузкой 11 кВт в течение 4 мин, а последующие 6 мин он должен быть отключен от сети.

Реальная диаграмма может иметь вид на рис. 1.9,а, при нагрузке, когда ее длительность и пауза не одинаковы. В этом случае строят эквивалентную (идеализированную) диаграмму (рис. 1.9,б), где $t_{\rm II} = \Sigma t_{\rm p} + \square \Sigma t_{\rm II}$, а $\Pi B = \Sigma t_{\rm p}/t_{\rm II}$.

1.5. Расчет мощности и выбор электродвигателя для длительного режима работы

Определение номинальной мощности двигателя для работы в длительном режиме с постоянной нагрузкой (см. рис. 1.6,а) сводится к подсчету мощности Р_с исполнительного механизма, приведенной к валу двигателя (с учетом КПД передач, редукторов и т.д.). По полученной мощности Р в каталогах выбирают двигатель номинальной мощностью $P_{\text{ном}} \ge P_{\text{с}}$ (предварительно выбраны род тока, частота и конструктивное исполнение двигателя). напряжение, Номинальная мощность, указанная В каталоге, является наибольшей мощностью, на длительную работу без опасности перегрева рассчитан двигатель. Так как нагрузка постоянна, то специальной тепловой проверки не требуется. При тяжелых условиях пуска проверяют, достаточен ли развиваемый двигателем пусковой момент.

Определение номинальной мощности двигателя при длительной переменной нагрузке производят по методу средних потерь или по методу эквивалентных величин (тока, момента, мощности). Эти методы заключаются в тепловой проверке предварительно выбранного двигателя. Предварительно (ориентировочно) двигатель выбирают по средней мощности нагрузки (см. рис. 1.6,б):

$$P_{np} = kP_{cp}, \ P_{cp} = \frac{\sum_{i=1}^{n} P_{i}t_{i}}{\sum_{i=1}^{n} t_{i}} = \frac{P_{1}t_{1} + P_{2}t_{2} + ... + P_{n}t_{n}}{t_{1} + t_{2} + ... + t_{n}},$$
(1.18)

где $k = 1,1 \div 1,3 - коэффициент запаса.$

По предварительной мощности P_{np} в каталоге выбирают двигатель с номинальной мощностью $P_{\text{ном}} {\geq} P_{np}$, а затем одним из методов проверяют его по нагреву.

Выбор двигателя по средней мощности неправилен потому, что не учитывает квадратичной зависимости переменных потерь от тока. При больших колебаниях нагрузки средняя мощность оказывается заниженной.

Если же при заданном графике переменной нагрузки (см. рис. 1.6,б) выбрать электродвигатель по наибольшей или по наименьшей мощности, то в первом случае она окажется завышенной, а во втором – заниженной. Применение же двигателя завышенной мощности увеличивает капитальные затраты, приводит к снижению КПД, соѕф. Использование двигателя недостаточной мощности снижает производительность и надежность электропривода, сокращает срок его службы.

Этими обстоятельствами и определяется необходимость в других методах выбора номинальной мощности двигателя при переменной нагрузке — методе средних потерь и методе эквивалентных величин.

Метод средних потерь. При постоянной нагрузке на валу ($P_{\text{ном}}$) мощность потерь остается неизменной ($\Delta P_{\text{ном}}$). При изменяющейся нагрузке изменяется и мощность потерь. Считают, что двигатель нагревается одинаково, если средняя мощность потерь ($\Delta P_{\text{ср}}$) за время цикла при переменной нагрузке равна мощности потерь при постоянной номинальной нагрузке:

$$\Delta P_{\rm cp} = \Delta P_{\rm HOM} \tag{1.19}$$

(это справедливо, если продолжительность цикла много меньше продолжительности нагревания двигателя).

Таким образом, сначала для предварительно выбранного двигателя по формуле (1.10) определяют номинальные потери $\Delta P_{\text{ном}}$, а затем потери ΔP_1 , ΔP_2 , ... на каждом участке графика нагрузки (см.

рис. 1.6,б). Затем находят средние потери по формуле

$$\Delta P_{cp} = \frac{\Delta P_1 t_1 + \Delta P_2 t_2 + ... + \Delta P_n t_n}{t_1 + t_2 + ... + t_n}$$
(1.20)

и проверяют выполнение условия (1.19). Если значение $\Delta P_{\text{ном}}$ более чем на 10 % превышает $\Delta P_{\text{ср}}$, то выбирают другой двигатель и повторяют расчет. Этот метод достаточно точный, применим к выбору двигателей любого типа, но он трудоемок.

Метод эквивалентных величин (тока, момента, мощности). Переменные потери в двигателе пропорциональны квадрату тока нагрузки. Изменяющиеся по значению токи нагрузки заменяют эквивалентным не изменяющимся током $I_{3\kappa}$, который выделяет в двигателе ту же теплоту, что и изменяющиеся токи. Формулу эквивалентного тока можно получить на основании выражения (1.20):

$$I_{\mathfrak{K}} = \sqrt{\frac{I_1^2 t_1 + I_2^2 t_2 + \dots + I_n^2}{t_1 + t_2 + \dots + t_n}} = \sqrt{\frac{\sum_{i=1}^n I_i^2 t_i}{\sum_{i=1}^n t_i}}.$$
(1.21)

Найденный ток $I_{\text{эк}}$ сравнивают с током $I_{\text{ном}}$ предварительно выбранного двигателя. Двигатель выбран правильно, если

$$I_{\text{HOM}} \ge I_{\text{9K}}.$$
 (1.22)

Чаще имеют дело с графиком моментов или мощностей. Если момент двигателя пропорционален току, то формула (1.21) превращается в формулу эквивалентного момента:

$$M_{3K} = \sqrt{\frac{M_1^2 t_1 + M_2^2 t_2 + \dots + M_n^2 t_n}{t_1 + t_2 + \dots + t_n}} = \sqrt{\frac{\sum_{i=1}^n M_i^2 t_i}{\sum_{i=1}^n t_i}}.$$
 (1.23)

Выбор двигателя считается правильным, если номинальный момент предварительно выбранного двигателя

$$M_{\text{HOM}} \ge M_{\text{HK}}$$
.

Если скорость двигателя при изменении нагрузки изменяется незначительно, то можно определить эквивалентную мощность

$$P_{3K} = M_{3K}\Omega$$

или

$$P_{\mathfrak{K}} = \sqrt{\frac{P_1^2 t_1 + P_2^2 t_2 + \dots + P_n^2 t_n}{t_1 + t_2 + \dots + t_n}} = \sqrt{\frac{\sum_{i=1}^n P_i^2 t_i}{\sum_{i=1}^n t_n}}.$$
(1.24)

Условием правильного выбора будет неравенство

$$P_{HOM} \ge P_{\ni K}$$
.

Методы эквивалентных момента и мощности неприменимы для двигателей последовательного возбуждения, где момент не пропорционален току.

Выбранный двигатель подлежит обязательной проверке по перегрузочной способности и пусковому моменту (если пуск происходит под нагрузкой).

Мгновенная перегрузочная способность $\Box_{\rm M} = M_{\rm max}/M_{\rm ном}$ двигателей разных типов имеет следующие значения.

Перегрузочная способность λ_м двигателей

]	Постоянного тока общего назначения	2
	Специальные (тяговые) постоянного тока	3-4
	Асинхронные с контактными кольцами	2-2,5
	Асинхронные с К3-ротором нормального исполнени	я 1,8-3
	Асинхронные глубокопазные с двойной клеткой	1,8-2,7
	Синхронные	2-2,5
	Синхронные специальные	3-4
	Коллекторные переменного тока	2-3

Если максимальный момент нагрузки больше, чем двигатель может развить, то выбирают двигатель большей мощности.

Маховиковый привод. Для механизмов с ударной нагрузкой (молоты, прессы, штамповочные машины и др.) электродвигатель

пришлось бы выбирать не по нагреву, а по механической перегрузке, что привело бы к завышению мощности. Но мощность двигателя можно снизить и приблизить к требуемой по нагреву, если «выровнять» нагрузочный график с помощью маховика.

В периоды резкого увеличения нагрузки (P_1 на рис. 1.10) часть ее покрывает двигатель, а часть — маховик, отдающий свою кинетическую энергию. Во время сброса нагрузки (до P_2) скорость привода возрастает и в маховике снова увеличивается запас энергии. Таким образом, электродвигатель будет развивать мощность, меньшую P_1 и большую P_2 ; эквивалентная мощность приближается к средней мощности P. Поэтому применение маховика снижает номинальную мощность двигателя. Но двигатель должен обладать достаточно мягкой механической характеристикой.

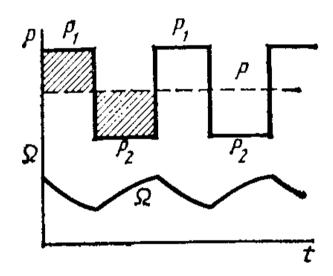


Рис. 1.10. Графики P(t) и $\Omega(t)$ маховикового привода При замене электродвигателя с маховиковым приводом следует подбирать двигатель аналогично заменяемому.

1.6. Расчет мощности и выбор электродвигателя для повторно-кратковременного и кратковременного режимов работы

Повторно-краковременный режим характеризуется продолжительностью включения ПВ%. Каждому значению ПВ соответствует значение номинальной мощности, с которой в этом режиме двигатель может долго работать, не перегреваясь. Таким образом, при повторно-кратковременной работе электропривода один и тот же двигатель допускает различные нагрузки. Чем больше ПВ,

т.е. чем больше длительность рабочего периода, тем меньше должна быть нагрузка двигателя.

Расчет мощности двигателя производят следующим образом. По нагрузочной диаграмме механизма предварительно выбирают P_{cp}. двигатель мощностью Затем строят нагрузочную его характеристику M(t) или I(t), по которой двигатель проверяют на допустимый нагрев. Нагрузочные диаграммы механизма и двигателя не совпадают, если время пуска примерно равно длительности работы. По нагрузочной диаграмме определяют действительное значение ПВ по формуле 1.17, а по формуле 1.24 определяют $P_{\nu \kappa}$ (или эквивалентную мощность Рэк пересчитывают Далее ближайшего стандартного значения ПВном по упрощенным формулам (не учитывающим постоянные потери в двигателе):

$$P = P_{\rm 9K} \sqrt{\Pi B/\Pi B_{\rm HOM}} \ , \quad M = M_{\rm 9K} \sqrt{\Pi B/\Pi B_{\rm HOM}} \ , \quad I = I_{\rm 9K} \sqrt{\Pi B/\Pi B_{\rm HOM}} \ . \eqno(1.25)$$

По каталогу выбирают двигатель с номинальной мощностью $P_{\text{ном}}$ при $\Pi B_{\text{ном}}$ так, чтобы $P_{\text{ном}} {\scriptscriptstyle >} P$. Выбранный двигатель проверяют на перегрузочную способность.

Для кратковременного режима работы электропромышленность выпускает двигатели кранового типа с продолжительностью 15, 30, 60 и 90 мин, для которых указана соответствующая номинальная мощность, Мощность двигателя для кратковременного режима работы определяют по методу эквивалентных величин с последующим выбором в специальном каталоге.

Для режима кратковременной нагрузки $(P_{\kappa B})$ могут быть использованы электродвигатели длительного режима $(P_{\kappa B})$. Их можно

кратковременно в течение времени $t_{\rm kB}$ перегружать так, чтобы переперев не превышал допустимой величины (рис. 1.11).

В большинстве случаев в режиме кратковременной нагрузки эти двигатели не могут быть использованы по нагреву полностью. Поэтому их номинальная мощность определяется условиями механической перегрузки. Например, кратковременная мощность нагрузки P = 18~ кВт, механическая перегрузка равна двум. Ориентировочная мощность двигателя $P_{cp} = P/2 = 9~$ кВт. По каталогу ближайший больший асинхронный двигатель АОП-62-4 имеет параметры: $P_{\text{ном}} = 10~$ кВт, n = 1460~ об/мин, $\lambda_{\text{м}} = 2,5, \lambda_{\text{п}} = 2$. Проверим перегрузочную способность двигателя: $M_{\text{ном}} = 9550~$ $P_{\text{ном}}/n_{\text{ном}} = 65,3~$ Н

м, Максимальный и пусковой моменты с учетом возможного снижения напряжения на 10 % составляют: $M_{max}==0.9^2x2.5x65.3=132$ H м, $M_{\pi}=0.9^2x2x65.3=105$ H м. Момент сопротивления нагрузки $M_{c}==9550$ P/ $n_{hom}=118$ H м.

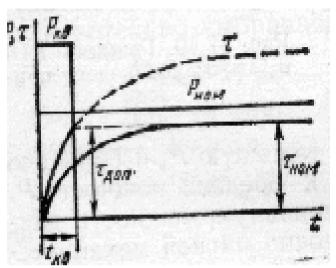


Рис. 1.11. К определению кратковременной и длительной номинальных мощностей двигателя и его нагрева

Следовательно, по механической перегрузке двигатель был бы пригоден, но его пусковой момент мал и поэтому двигатель не возьмет с места. Следующим большим будет электродвигатель АОП-63-4 на 14 кВт. Его следует проверить только по пусковому моменту.

2. Выбор коммутационной аппаратуры

2.1. Расчет токов плавких вставок предохранителей

Предохранители служат для защиты электрических установок от токов короткого замыкания. Наибольшее применение для защиты при напряжении до 1 кВ имеют предохранители типов ПР-2 (предохранитель разборный без наполнителя); НПН (насыпной предохранитель неразборный); ПНР-2 (предохранитель насыпной разборный).

Для линий номинальный ток плавкой вставки выбирается по величине длительного расчетного тока линии I_{p} по соотношению:

$$I_{BC} \ge I_{P}$$
. (2.1)

Для ответвлений к отдельным электродвигателям

$$I_{BC} \ge \frac{I_{\Pi}}{2.5},\tag{2.2}$$

где I_n – пусковой ток электродвигателя.

Для группы электродвигателей

$$I_{BC} \ge \frac{K_0 \sum I_P + (I_{\Pi}^1 - I_P^1)}{2.5}$$
 (2.3)

В скобках значения для двигателя, имеющего наибольшую разность между пусковым и рабочим токами.

2.2. Выбор аппаратов управления и защиты для электродвигателей

Для дистанционного управления трехфазными асинхронными двигателями с короткозамкнутым ротором используются магнитные пускатели серии ПМЕ, ПА, ПАЕ. Магнитные пускатели осуществляют защиту электродвигателей при перегрузках. Магнитные пускатели различают:

- а) по величине (габаритам) в зависимости от мощности электродвигателя -1, 2, 3, 4, 5, 6;
- б) по роду защиты от окружающей среды открытые, защищенные и пылеводозащищенные;
- в) по возможности реверсирования реверсивные и нереверсивные;
- г) по наличию и отсутствию тепловой защиты. Защита осуществляется с помощью тепловых реле типа ТРН или ТРП и др.

Условия выбора номинального тока теплового элемента реле определяется соотношением:

$$I_{\text{HT}} \geq I_{\text{PACY}}$$
 (2.4)

Для защиты электродвигателей от токов короткого замыкания следует использовать автоматические выключатели АП-50, АЗ100

или плавкие предохранители типа ПР-2, ПП-2, НПН.

Автоматические выключатели серии АП-50 имеют исполнение с тепловыми и электромагнитными, только с электромагнитными или только с тепловыми расцепителями. Наибольшее распространение автоматические получили выключатели c тепловыми электромагнитными расцепителями $A\Pi$ -50-3MT. Тепловые расцепители этих автоматов выполняются с регулируемой уставкой тока срабатывания. Уставка на ток мгновенного срабатывания Іотс электромагнитных расцепителей равна 3, 5, 7 и 11 – кратному значению номинального тока расцепителей.

Условия выбора автоматов АП-50 следующие:

$$I_{H,A} \ge I_{H,\Pi},$$
 (2.5)

$$I_{HP} \ge 1,25I_{H,I},$$
 (2.6)

$$I_{\text{OTC}} \ge I_{\text{IIVCK}},$$
 (2.7)

где $I_{H,A}$ – номинальный ток автомата, A;

 $I_{H,P}$ – номинальный ток расцепителя, A;

І_{ОТС} – ток мгновенного срабатывания (отсечка), А;

 $I_{\text{H.Д}}$ — номинальный ток электродвигателя, A, который определяется из выражения

$$I_{H,J} = \frac{P_{H,J}}{\sqrt{3}U_{H}n_{H}\cos\varphi} \times 10^{3};$$
 (2.8)

 $I_{\text{пуск}}$ – пусковой ток электродвигателя, A.

Установочные автоматические выключатели серии A3100 выпускаются с тепловыми расцепителями A3160, с электромагнитными и комбинированными расцепителями — A3110, A3120, A3130, A3140.

<u>Расцепители нерегулируемые.</u> Номинальные токи электромагнитных расцепителей равны десятикратному значению номинального тока расцепителя для автомата A31110 и различной кратности для других автоматов – A3120, A3130, A3140.

Условия выбора автоматов А3100 следующие:

$$I_{\text{H.A}} \ge I_{\text{PACY}},\tag{2.9}$$

$$I_{H,P} \ge (1,15 \div 1,2) I_{PACH},$$
 (2.10)

$$I_{M\Gamma H CP} \ge (1.5 \div 1.8) I_{\Pi UK},$$
 (2.11)

где імгн.ср – ток уставки мгновенного срабатывания, А;

 $\mathbf{I}_{\text{пик}}$ - пиковый ток, \mathbf{A} .

Для одиночного электрического приемника: $I_{\text{\tiny PACЧ}} = I_{\text{\tiny H.Д}}; \; I_{\text{\tiny ПИК}} = I_{\text{\tiny ПУСК}}.$

Коэффициент 1,5 следует принимать при расчете ответвлений к одиночному приемнику или при ответвлении с небольшим числом электрических приемников. Коэффициент 1,8 принимается при расчете ответвлений и магистрали с большим числом приемников, например, к шинопроводу.

Условия выбора плавких предохранителей для защиты электродвигателей от токов короткого замыкания следующие:

$$I_{H.\Pi.B} = I_{H.Д}, \quad I_{H.\Pi.B} = \frac{I_{\Pi VCK}}{\alpha},$$
 (2.12)

где Індів – номинальный ток плавкой вставки;

коэффициент, зависящий от типа и материала предохранителя, а также режима перегрузки.

При легких условиях пуска, когда время пуска не более 8 секунд, $\alpha = 2.5 \div 3$ при малоинерционных и без инерционных предохранителях со вставками из меди, серебра, цинка.

Для предохранителей с теми же плавкими вставками, но при тяжелых условиях пуска (более 10 с.), указанный коэффициент принимается равным $1,6 \div 2$.

Пример расчета 1.

Выбрать магнитный пускатель и автомат АП-50 для защиты электродвигателя марки AO2-22-2, если известно: $P_{\rm H}$ = 2,2 кВт; $I_{\rm H, L}$ = 4,5 A;

$$I_{\mbox{\tiny II}}/I_{\mbox{\tiny H.J.}}=7$$
 .

Решение.

1. Выбираем магнитный пускатель серии ПМЕ-112 первой величины в открытом исполнении, нереверсивный, с тепловым реле

ТРН-8 из [4].

- 2. Определяем номинальный ток теплового элемента реле ТРН-8, соблюдая условие $I_{T.H.Э} \ge I_{PACY}$. В нашем случае $I_{PACY} = I_{H,Д} = 4,5$ А. Таким образом, выбираем $I_{H.T.Э} = 5$ А; $I_{H,T.Э} > I_{PACY}$.
 - 3. Выбираем автомат АП-50-3МТ из [4].
- 4. Номинальный ток расцепителя $I_{H,P}$ определяется из условия $I_{H,P} \ge 1,25 \; I_{H,R}. \; I_{H,P} \ge 1,25 \times 4,5 \; A; \; I_{H,P} \ge 5,6 \; A.$
- 5. По данным из [4] подбираем ближайшее большее к расчетному значению $I_{\text{H,P}} = 6,4$ A.

Ток отсечки данного автомата может превышать значение $I_{\text{\tiny H,P}}$ в 3,5, 7 и 11 раз, но при выполнении условия:

$$I_{OTC} \ge I_{\Pi YCK}$$
.

6. Определяем $I_{\text{пуск}} = I_{\text{н.д}} \times 7 = 4,5 \times 7 = 31,5$ А. Принимаем $I_{\text{отс}} = I_{\text{н.д}} \times 7 = 6.4 \times 7 = 44.8$ А.

Пример расчета 2.

Выбор автоматического воздушного выключателя серии А3100 для защиты электродвигателя.

Исходные данные: Электродвигатель марки AO2-72-4; $P_{\text{\tiny H,Д}}=30$ кВт; $I_{\text{\tiny H,I}}=55$ A; $I_{\text{\tiny H}}/I_{\text{\tiny H,I}}=7$.

Решение.

1. Выбираем автомат А3114 с комбинированными расцепителями

 $I_{H.A} = 100 A (из [4]).$

 $I_{H.A} = 100 \text{ A} > I_{H.J.} = 55 \text{ A}.$

2. Номинальный ток расцепителя автомата должен быть больше или равен $I_{H,\Pi}$ с учетом $K_{\text{зап}} = 1.15 \div 1,2$.

 $I_{H.P} \ge (1,15 \div 1,2) I_{H.Д}$

 $I_{H.P} \ge 1,2x55 = 66 A.$

 $I_{HP} \ge 66 A$.

- 3. Выбираем $I_{\text{H.P.}} = 80$ A. Этому значению соответствует значение $I_{\text{мгн.cp}} = 800$ A.
- 4. Проверяем устойчивость работы выбранного автомата при запуске двигателя по условию:

 $I_{\text{MITH,CP}} \ge (1,5 \div 1,8) I_{\text{HYCK}}.$

 $I_{MFH,CP} \ge 1,5x55x7 = 577 A.$

 $800~{\rm A} > 577~{\rm A}$. Значит автомат работает надежно и выбран правильно.

Для защиты асинхронных двигателей с фазным ротором и двигателей постоянного тока, у которых $I_{\Pi VCK} \approx 2~I_{H.Д.}$

$$I_{\text{HIIB}} \ge (1 \div 1,25) I_{\text{H.A.}}$$
 (2.13)

$$I_{\text{VCT}} \ge (2 \div 2.5) I_{\text{JB}},$$
 (2.14)

где $I_{\text{н,д}}$ – номинальный ток электродвигателя.

Для защиты схемы управления

$$I_{\text{HIIB}} = I_{\text{yct}} = 2.5 I_{\text{ys}},$$
 (2.15)

где $I_{y\Sigma}$ - суммарный ток катушек максимального количества включенных одновременно аппаратов в схеме управления.

Максимально-токовая защита применяется для защиты электродвигателя постоянного тока и синхронного двигателя от обрыва в цепи обмотки возбуждения. Она осуществляется с помощью реле обрыва поля (РОП), в качестве которых применяются реле минимального тока.

Защита от перегрузки электродвигателя при длительном режиме работы обеспечивается тепловой защитой с помощью реле типа ТРН, ТРП или автоматов с тепловыми расцепителями.

Нагревательные элементы тепловых реле в зависимости от температуры окружающей среды выбирают по формуле

$$I_{\text{H.3}} = \frac{I_{\text{H.Д}}}{\sqrt{1,6 - 0,017\tau}} \tag{2.16}$$

при $\tau=35^0 C$ имеем $I_{_{\rm H.3}}\approx\,I_{_{\rm H.Д}}.$

Защита от перегрузки электродвигателя, работающего в повторно-кратковременном режимах, осуществляется максимально-токовыми реле и автоматами с магнитными расцепителями.

Нулевая защима обеспечивает отключение двигателя при исчезновении или значительном снижении напряжения сети. При кнопочном управлении защиту осуществляет линейный контактор

при управлении с помощью команд контролера-реле напряжения РН.

перенапряжения на обмотке возбуждения Защита om имеющей электродвигателя постоянного тока, значительную при отключении, осуществляется разрядным индуктивность ee сопротивлением, величина которого принимается в 3-5 раз большей сопротивления обмотки возбуждения при напряжении 220 В и в 6-8 раз при напряжении 110 В.

Защита от затянувшегося пуска синхронного двигателя запрещает пуск электродвигателя при неполном возбуждении его ротора. Защита осуществляется с помощью реле обрыва поля РОП и реле времени РП.

Используемая литература

- 1. Алиев И. И. Электротехнический справочник. 3-е изд. М.: ИП РадиоСофт, 2000. 384 с.
- 2. Беляев А. В. Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ. -Л.: Энергоатомиздат, 1988. 176 с.
- 3. Выбор электрических аппаратов для электропривода, электрического транспорта и электроснабжения промышленных предприятий / Под ред. А.А.Чунихина, Ю.С. Коробкова. М.: Изд-во МЭИ, 1990. 132 с.
- 4. Выбор электрических аппаратов для электротехнических промышленных устройств / Под ред. Ю. С. Коробкова. М.: Изд-во МЭИ, 1992. 123с.
- 5. Москаленко В.В. Электрический привод. М.: Высшая школа, 1991. 432 с.
- 6. Методические указания по проектированию электрической части дипломного проекта\ Муромова Н.С., Козыркин И.К., Сапунов Ю.А. М.: МТИПП, 1971.-46 с.
- 7. Электротехника: Учебник для неэлектрических спец. Вузов/Зайдель Х.Э., Коген-Далин В.В., Крымов В.В. и др.; Под ред. В.Г. Герасимова. 3-е изд., перераб. И доп. М.: Высш. Школа, 1985. 480 с.
- 8. Электротехнический справочник. В 4 т. Т. 2. Электротехнические изделия и устройства / Под общ. ред. профессоров МЭИ В. Г. Герасимова и др. 8-е изд. М.: Изд-во МЭИ, 1998. 518 с.

П.1.1. Аппараты управления

К аппаратам ручного управления относятся командные маломощные устройства - кнопки, ключи управления и различные командоаппараты, с помощью которых осуществляется коммутация электрических цепей управления и подача команд управления на различные электротехнические объекты.

Кнопки управления различаются по размерам - нормальные и малогабаритные, по числу замыкающих и размыкающих контактов, по форме толкателя, по величине и роду тока и напряжения, по степени защиты от воздействия окружающей среды. Две, три или более кнопок, смонтированных в одном корпусе, образуют кнопочную станцию.

Выключатели кнопочных серий КУ предназначены для работы в цепях переменного тока с напряжением до 500 В и постоянного тока с напряжением до 220 В и токами до 10 А. Максимальная частота включений в час - 1200 циклов, коммутационная износостойкость различных исполнений выключателей - от 0,1 до 10 млн циклов.

Структура условного обозначения выключателей КУ:

$$KY X_1X_2 X_3 X_4 X_5 X_6 - X_7$$
,

где КУ - серия;

 X_1X_2 - количество замыкающих (3) и размыкающих (P) контактов;

 X_3 - тип толкателя: 0 - другой вид приводного устройства; 1 - цилиндрический толкатель; 2 - грибовидный толкатель; 3 - грибовидный фиксируемый;

 X_4 - цвет толкателя: 1 - черный; 2 - красный; 3 - зеленый; 4 - желтый; 5 - синий; 6 - белый;

 X_5 - наличие специальных устройств: 0 - отсутствуют; 1 - рукоятка 0 ... 90°; 2 - рукоятка 45 ... 45°; 3 - рукоятка 90 ... 0 ... 90°; 4 - ключ 0 ... 90°, вынимается; 5 - ключ 90 ... 0 ... 90°, вынимается; 6 - ключ 0 ... 90°, не вынимается; 7 - ключ 90 ... 0 ... 90°, не вынимается;

 X_6 - исполнение выключателей со степенью защиты со стороны управляющего элемента: 1 - IP40; 2 - IP54;

 X_7 - климатическое исполнение (У, УХЛ, Т) по ГОСТ 15150 -69.

Пример обозначения: КУ131101 - выключатель, имеющий один замыкающий и три размыкающих контакта, цилиндрический толкатель, черного цвета, без специальных устройств, степень зашиты IP40.

Кнопки и кнопочные станции типа КУ120 и КЕ предназначены для работы в цепях переменного ток при напряжении до 380 В и постоянного тока при напряжении до 220 В и номинальные токи до 4 А.

Ключи управления (универсальные переключатели) имеют два или более фиксированных положений рукоятки управления и несколько замыкающих и размыкающих контактов.

Ключи управления серии ПЕ выпускаются на те же напряжения и токи, что и кнопки управления КЕ. Универсальные переключатели серий УП5300, УП5400 и ПКУЗ используются для коммутации цепей катушек контакторов, масляных выключателей, управления многоскоростными асинхронными двигателями и в ряде других случаев. Они могут коммутировать до 32 цепей и иметь до восьми положений (позиций) рукоятки управления.

П.1.2. Силовые коммутационные аппараты с ручным управлением

Рубильники представляют собой простые коммутационные аппараты, предназначенные для неавтоматического нечастого замыкания и размыкания силовых электрических цепей постоянного и переменного тока напряжением до 500 В и током до 5000 А. Они различаются по величине коммутируемого тока, количеству полюсов (коммутируемых цепей), виду привода рукоятки и числу ее положений (два или три). Рубильники серий Р и РА выпускаются на токи 100...600 А, напряжения 220...660 В и имеют 1...3 полюса.

Пакетные выключатели являются разновидностью рубильников, отличающихся тем, что их контактная система набирается из отдельных пакетов по числу полюсов (коммутируемых цепей). Пакет состоит из изолятора, в пазах которого находятся неподвижный контакт с винтовыми зажимами для подключения проводов и пружинный подвижный контакт с устройством искрогашения.

Промышленностью выпускаются пакетные выключатели типа ПВМ, ППМ, ПУ, УП, ОКП, ПВП11, предназначенные для коммутации электрических цепей постоянного тока напряжением до

220 В и токами до 400 А и переменного тока до 250 А при напряжении до 380 В.

В табл. П.1.2.1 приведены параметры рубильников серии P на номинальное напряжение 500 B и пакетных выключателей серии ПВМ на напряжения 220 B постоянного тока на напряжение 380 B переменного тока.

Таблица П.1.2.1 Технические характеристики рубильников и пакетных выключателей

	Номинальный	Номинальный	
Тип	постоянный ток,	переменный ток,	Число полюсов
	A	A	
P2 124/2	800	800	2
P2344/2	1500	1500	2
P2523/2	300	2500	2
P2723/2	5000	4000	2
P2 126/2	800	800	3
P2326/2	1500	1500	3
P2525/2	3000	2500	3
P2725/2	5000	4000	3
ПВМ1-10	6,3	4	1
ПВМ2-10	10	6,3	2
ПВМ2-25	25	16	2
ПВМ2-60	60	40	2
ПВМ2-100	100	63	2
ПВМ2-150	250	160	2
ПВМ2-400	400	250	2
ПВМ3-10	10	6,3	3
ПВМЗ-25	25	16	3
ПВМЗ-100	100	63	3
ПВМ3-60	63	40	3
ПВМЗ-250	250	160	3
ПВМ3-400	400	250	3

Разновидностью рубильников являются переключателиразъединители с различными приводами: рычажным типа ППЦ, с центральной рукояткой, от маховика или штанги типа П2000/2. Они

выпускаются на те же номинальные напряжения и числа полюсов и на токи от 100 до 5000 А.

П.1.3. Автоматические выключатели

Автоматические выключатели (автоматы) низкого напряжения представляют собой многоцелевые электрические аппараты для автоматической защиты электрических цепей и оборудования от аварийных режимов - токов короткого замыкания и перегрузки, снижения или исчезновения напряжения, изменения направления тока и др., а также для нечастой коммутации электрических цепей. Для осуществления функций защиты автоматические выключатели снабжаются расцепителями, которые при возникновении аварийных режимов воздействуют на удерживающий элемент аппарата, приводя к его отключению. По принципу своего действия расцепители бывают электромагнитными, тепловыми и полупроводниковыми.

Применяемые автоматические выключатели различаются между собой назначением, уровнями номинальных токов и напряжения, набором и исполнением применяемых защит, отключающей способностью и временем отключения. Диапазон их номинальных токов составляет 10... 10 000 A, предельных коммутируемых токов - 0,3 ... 100 кA, время отключения - 0,02 ... 0,7 с.

Автоматические выключатели серии A3000 (табл. П.1.3.1) имеют несколько исполнений и широко используются в различных установках.

Автоматические выключатели серии «Электрон» (табл. П.1.3.2) применяются в установках с напряжением постоянного тока до 440 В и переменного тока до 660 В. Они могут иметь два или три силовых контакта и по четыре размыкающих и замыкающих вспомогательных контакта.

Автоматические выключатели серий AE-1000, AE-2000 (табл. П.1.3.3) имеют электромагнитные и комбинированные расцепители и допускают частоту оперативных переключений до 30 в час.

Автоматические выключатели серий АП-50, АК-50 обеспечивают защиту от токов короткого замыкания и перегрузок и могут использоваться для подключения асинхронных двигателей соответствующей мощности (см. табл. П.1.3.3).

Автоматические выключатели серии А-63 имеют однополюсное исполнение и допускают 50 000 циклов «включено - отключено», из

них 6000 циклов при номинальных токе и напряжении (см. табл. $\Pi.1.3.3$).

Таблица П.1.3.1 Технические характеристики автоматических выключателей серии A3000

Тип	Ток,	Напря- жение, В	Число полюсов	Ток уставки расце- пителя, А	•	ный ток ения, кА перемен- ный	Время отключения, с
A3 160	50	110,	1,2,3	1550	1,63,6	2,54,5	0,025
		220					
A3110	110	220	2, 3	15100	5	2,510	0,015
A3 120	200	220	2,3		20	18	-
A3 130	200	220	2,3	100200	1728	1425	0,015
A3 140	600	220	2,3	250600	2550	3240	0,03
А3710Ф	160-	220,	2,3	-	2550	2550	-
А3730Ф	630	380					

Таблица П.1.3.2 Технические характеристики автоматических выключателей серии «Электрон»

Параметр		Tı	ип автомат	a	
	Э06	Э10	Э16	Э25	Э40
Номинальный ток, А	630	1000	1600	2500	5000
Коммутационная	50	84	84	105	160
способность, кА					

Автоматические выключатели серии AC-25 имеют морское и тропическое исполнение и могут работать в передвижных установках при тряске и вибрациях (см. табл. П.1.3.3).

Автоматические выключатели серий BA50 и BA75 предназначены для замены автоматов серий AE2000, A3700 и

Технические характеристики автоматов с электромагнитным
расцепителем

Тип	Номи- наль- ный ток, А	Номи- нальное напря- жение, В	Число полюсов	Колич вспомога конта замы- кающих	тельных	Наличие теплового расцепи-теля
AK-63	63	200400	2,3	1	1	Есть
AK-50	50	320400	2,3	1,2	1,2	-
АП-50	50	220500	2,3	-	-	Есть
A-63	25	110220	1	-	-	-
AE-1000	25	240	1	-	-	Есть
AE-2000	25, 63,	220500	1,2,3	-	-	-
	100					
AC-25	25	220380	2, 3	-	_	-
ACT-2/3	25	380	2,3	-	-	-

«Электрон» и рассчитаны на токи от 25 до 4000 А и номинальные напряжения до 440 В постоянного и 660 В переменного тока. Они имеют предельную коммутационную способность до 160 кА (цепи постоянного тока) и 45 кА (цепи переменного тока). Автоматы ВА47-38 и ВА47-43 являются быстродействующими и предназначены для защиты силовых полупроводниковых приборов и преобразователей напряжением до 600 В постоянного и 660 В переменного тока. Их собственное время отключения не зависит от уровня тока короткого замыкания и не превышает 1 мс.

П.1.4. Контакторы и пускатели

Контактор представляет собой электромагнитный аппарат с дистанционным управлением, предназначенный для частных коммутаций силовых цепей. Контакторы различаются: по роду тока коммутируемой цепи (постоянного тока, переменного тока, постоянного и переменного токов); по количеству главных контактов (одно-, двух- и многополюсные); по роду тока цепи катушки (с управлением напряжением постоянного и переменного токов); по

номинальным току и напряжению коммутируемых цепей; по конструктивному исполнению (с механическими контактами и бесконтактные) и другим признакам.

Контакторы постоянного тока изготовляются с одним или двумя полюсами на номинальные токи главных контактов от 4 до 2500 А. Главные контакты способны отключать токи перегрузки до 7... 10-кратных от номинального тока. Катушки контакторов постоянного тока имеют большое количество витков и обладают значительной индуктивностью, что затрудняет размыкание цепей этих катушек. Мостиковые блок-контакты могут отключать токи до 20 А при напряжении до 500 В в цепях катушек аппаратов переменного тока, а в цепях катушек аппаратов постоянного тока - до 2,5 А при 110 В, 2 А при 220 В и 0,5 А при 440 В.

В табл. П.1.4.1 приведены параметры основных типов контакторов постоянного тока.

работы, Для тяжелых условий В частности крановых электроприводов, предназначаются контакторы серий КПВ600 и КПВ620 на токи от 100 до 630 А с одним главным контактом. Для электроприводах постоянного В общепромышленного назначения выпускаются контакторы серий КП и КПД на токи от 25 до 250 А с одним или двумя главными контактами. Контакторы имеют магнитную систему клапанного типа, главные контакты пальцевого типа и вспомогательные контакты мостикового типа. Контакторы снабжены дугогасительной системой.

Контакторы переменного тока по принципу своего действия и основным элементам конструкции не отличаются от контакторов постоянного тока. Особенности их работы связаны с питанием катушек переменным током, что приводит к повышению тока в катушке при срабатывании, который в несколько раз превышает ток при втянутом якоре. По этой причине для контакторов переменного тока ограничивается число их включений в час (обычно не более 600). Кроме того, пульсирующий магнитный поток, создаваемый катушки, вызывает вибрацию переменным ТОКОМ И магнитопровода, а также его повышенный нагрев. Для уменьшения факторов магнитопровод набирается нежелательных тонколистовой трансформаторной стали, а на сердечник или якорь помещают короткозамкнутый виток.

В отличие от контакторов постоянного тока у контакторов переменного тока условия гашения дуги более легкие, так как дуга на

переменном токе менее устойчива и может погаснуть при прохождении переменного тока нагрузки через ноль.

Таблица П.1.4.1 Технические характеристики контакторов постоянного тока

Но		Номинальные		Обмотка		
Тип	напряжение, В	ток, А	напряжение, В	мощность, Вт	частота включений в час	
Контакторы постоянного тока						
КП1	220	20, 40, 75	110	20	1200	
КП2	220	20, 40, 75	220	180	240	
КП7	660	2500	110, 220	180	240	
КП207	600	2500	110,220	3070	300 1200	
КПВ600	220	63, 100, 160,	110,220	180	240	
		250, 630				
KMB621	220	50	40220	-	-	
КПД 100	220	25250	110440	35	1200	
	Контакт	поры постоян	ного и пере.	менного то	ка	
MK1	220, 500	40	24200	38	-	
KM200	220, 380	До 600	До 380	50	600	
KM3-0	220, 380	40	127220	_	-	
РПК1	440,500	10	До 500	_	-	
KH100-	200	25200	До 320	1050	-	
KH400						

В табл. П.1.4.2 приведены параметры основных типов контакторов переменного тока.

Контакторы переменного тока серий КТ6000, КТ7000, КТП600 имеют от двух до пяти главных контактов. Их катушки могут выполняться на напряжение переменного тока от 36 до 500 В частотой 50 Гц.

Контакторы серий КТ64, КТП64, КТ65 и КТП65 являются модификацией контакторов серий КТ6000, КТ7000 и КТП600. В них осуществляется бездуговая коммутация контактов путем шунтирования главных контактов тиристорами во время их размыкания. Отсутствие при отключении контакторов повышает их

	Номи	нальные	Число	Допустимая	
Тип	напряжение, В	ток, А	полюсов	частота включений в час	
KT6000	380, 660	100, 160, 250,	2, 3, 4, 5	1200	
		400, 630, 1000			
KT7000	380, 660	100, 160	2, 3, 4, 5	600	
КТПВ600	380	63, 100,	2	1200	
		160250			
КТП6000	380, 660	100, 160, 250,	2,3,4	1200	
		400, 630			

Технические характеристики контакторов переменного тока

надежность, износостойкость главных контактов И взрывобезопасность. Это позволяет, В частности, увеличить допустимое число их включений в час до 2000. К универсальным коммутировать позволяющим контакторам, силовые постоянного, так и переменного тока, относятся контакторы серии МК (табл. П.1.4.3). Они обеспечивают коммутацию тока до 63 А в цепях постоянного тока напряжением до 440 В и переменного тока напряжением до 660 В частотой 50 и 60 Гц. Число главных контактов - от 1 до 3. Втягивающие катушки этих контакторов выполняются на постоянный ток напряжением 24, 48, 110 и 220 В.

Структура условного обозначения контакторов МК:

$$MK X_1 - X_2 X_3 X_4 X_5$$

где МК - серия;

 X_1 - номинальный ток главной цепи: 1 - 40 A, 2 - 63 A, 3 - 100 A,

4 - 160 A;

 X_2 - количество замыкающих контактов;

 X_3 - количество размыкающих контактов;

 X_4 - модификация контактора: Б - для привода высоковольтных выключателей; Д - для лифтов; М - для подвижного состава;

 X_5 - климатическое исполнение (У, УХЛ, Т).

Бесконтактные полупроводниковые контакторы (прерыватели) создаются на базе силовых полупроводниковых приборов -

Таблица П.1.4.3

Технические ха	рактеристики	контакторов	серии МК
	Posterio	Troil Top of	• • • • • • • • • • • • • • • • • • •

	Номи-	Номи	нальнь	ый раб ^о	очий т	ок, А
Тип	нальный	постоянный		переменный		
	ток, А	220B	440B	380B	500B	660B
MK1-10, MK1-01, MK1-11	40	40	-	-	-	-
MK1-20	40	40	40	40	25	-
MK1-02, MK1-21	40	40	-	-	_	-
MK1-22	40	40	-	40	_	-
MK1-30	40	-	-	40	25	-
MK2-10, MK2-01, MK2-11	63	63	-	-	-	-
MK2-20	63	63	40	63	40	-
MK2-02	63	63	-	-	_	-
MK2-30	63	-	-	63	40	40
МК1-20Д	40	-	-	18	18	_
MK1-20M	20	20	-	-	_	-
MK3-01, MK3-10, MK3-11	100	100	-	-	_	-
MK4-01, MK4-10, MK4-11	160	160	-	-	_	-
МКЗ-20Д	100	-	-	100	-	-
MK3-20	100	100	100	-	_	_
MK4-20	160	160	160	-	-	-
МК2-20Б	63	63	-	-	-	_

тиристоров и (реже) транзисторов - и отличаются широкими функциональными возможностями, высокой степенью быстродействием. износостойкости большим Отечественной И тиристорные разработаны промышленностью контакторы номинальное напряжение 380 В с естественной коммутацией типов ТКЕО-250/380 на номинальный ток 250 А для коммутаций линий нагрузки и ТКЕП-100/380 на ток 100 А для переключения нагрузки.

Тиристорные контакторы с искусственной коммутацией типа ТКИ выпускаются в составе агрегатов бесперебойного питания на номинальные токи 50, 100 и 200 А и имеют время срабатывания не более 1 мс.

Гибридные, или комбинированные, контакторы используют в своем составе электромеханические и полупроводниковые компоненты. В них коммутация осуществляется силовыми

полупроводниковыми приборами, а после включения ток проходит через электромеханические контакты. За счет этого повышаются скорость и управляемость процесса коммутации и частично исключается появление электрической дуги, а во включенном состоянии уменьшаются потери энергии в аппарате. В табл. П.1.4.4 приведены параметры гибридных контакторов переменного, а в табл. П.1.4.5 - постоянного тока.

Таблица П.1.4.4 Технические характеристики гибридных контакторов переменного тока

	Номи-	Номи-	Частота	Ток	Время
Тип	нальное	тюми- нальный	включений	короткого	отклю-
1 1111	напряжение,	ток, А	в час, не	замыкания,	чения,
	В	IUK, A	более	кА	мс
KT64-33	380	160	1200	8	12
KT64-35	380	250	1200	13	12
KT64-37	380	400	600	9	20
KT64-39	380	630	600	20	20
КТП64-33	380	160	2000	8	12
КТП64-35	380	250	2000	13	12
КТП64-37	380	400	1200	19	20
КТП64-39	380	630	1200	20	20

Таблица П.1.4.5 Технические характеристики гибридных контакторов постоянного тока

Тип	Номинальный	Номинальное	Масса, кг		
1 1111	ток, А	напряжение, В	контактора	блока	
КПЗ 1-33	160	220	29	20	
КП81-35	250	220	41,5	20	
КП81-37	400	220	60	28	
КП81-39	630	220	90	34	

Магнитный представляет собой пускатель специализированный аппарат, предназначенный главным образом для и реверса электрических двигателей. пуска, остановки управления магнитные пускатели обеспечивают с помощью тепловых реле защиту двигателей от токовых перегрузок и сигнализацию об их работе. В соответствии с перечисленными функциями в состав пускателя могут входить контактор, кнопки управления, тепловые реле защиты, сигнальные лампы, размещаемые в одном корпусе. Магнитные пускатели различаются между собой по назначению (нереверсивные и реверсивные), наличию или отсутствию тепловых управления, степени защиты OT воздействия кнопок окружающей среды, уровням коммутируемых токов, напряжению главной цепи.

В табл. П.1.4.6 приведены основные технические данные магнитных пускателей серий ПМЕ и ПАЕ.

Пускатели серии ПМЛ выпускаются на токи от 10 до 200 A, допустимая частота включения в час для пускателя первого - пятого габаритов составляет 3600, а для пускателей шестого и седьмого габаритов - 2400.

Пускатели серии ПМС предназначены для управления асинхронными двигателями и имеют шесть типоисполнений на токи от 10 до 160 А. В качестве встраиваемых элементов они могут иметь разделительный трансформатор, кнопки управления, амперметр, сигнальную лампу. Механическая износостойкость находится в пределах 10 ... 16 млн. циклов, а частота включений в час составляет 6000 для пускателей первого габарита и 2400 для пускателей пятого и шестого габаритов.

Пускатели серии ПМА выпускаются для управления асинхронными двигателями мощностью от 1,1 до 75 кВт с номинальным напряжением 380 и 660 В.

Бесконтактные собой пускатели представляют устройства, полупроводниковые (или гибридные) тиристорные, которые предназначены для управления двигателями (чаще всего асинхронными и синхронными) и отличаются теми же положительными свойствами, что и бесконтактные (гибридные) Некоторые типы таких пускателей контакторы. ограничивать пусковые токи двигателей или их моменты при пуске, поэтому они получили название «мягкие» пускатели, или «мягкие» стартеры. В табл. П1.4.7 ... П.1.4.10 представлены параметры

Таблица П.1.4.6 Технические характеристики пускателей серий ПМЕ и ПАЕ

Тип	Номинальный ток при напряжениях 380/500 B, A	Габаритные размеры, мм	Наличие теплового реле
ПМЕ-001	3/1,5	75 65 119	Нет
ПМЕ-002	3/1,5	121 83 101	Есть
ПМЕ-003	3/1,5	90 150 118	Нет
ПМЕ-004	3/1,5	135 150 118	Есть
ПМЕ-111	10/6	68 85 84	Нет
ПМЕ-112	10/6	154 102 91	Есть
ПМЕ- 113	10/6	164 90 106	Нет
ПМЕ-114	10/6	232 90 107	Есть
ПМЕ-211	25/14	102 90 118	Нет
ПМЕ-212	25/14	195 98 126	Есть
ПМЕ-213	25/14	130 205 155	Нет
ПМЕ-214	25/14	180 205 155	Есть
ПАЕ-311	40/21	214 114 144	Нет
ПАЕ-312	40/21	275 114 121	Есть
ПАЕ-313	40/21	214 239 114	Нет
ПАЕ-314	40/21	264 239 121	Есть
ПАЕ-411	63/35	290 183 135	Нет
ПАЕ-412	63/35	290 183 135	Есть
ПАЕ-413	63/35	275 343 135	Нет
ПАЕ-414	63/35	275 343 135	Есть
ПАЕ-511	110/61	335 200 156	Нет
ПАЕ-512	110/61	335 200 156	Есть
ПАЕ-513	110/61	320 338 170	Нет
ПАЕ-514	110/61	320 338 170	Есть
ПАЕ-611	146/80	380 230 190	Нет
ПАЕ-612	146/80	380 230 190	Есть
ПАЕ-613	146/80	385 435 190	Нет
ПАЕ-614	146/80	385 435 190	Есть

отечественных бесконтактных пускателей на напряжение 3*380 В.

Таблица П.1.4.7

Технические характеристики пускателей серии ПБН и ПБР (ГПО «УМЗ», Ульяновск)

Модель	· ·	Номинальный ток нагрузки, А	Испол- нение	Габаритные размеры, мм	Масса, кг
4	2	4	IP44	160 150 150	1,5
10	4	10	IP44	170 200 110	4,5
25	7,511	25	IP44	190 180 265	7,5
40	18,5	40	IP44	170 275 170	12,5
63	30	63	IP00	215 255 360	17,5
100	45	100	IP00	360 265 560	29
160	100	160	IP00	180 530 680	34

Таблица П.1.4.8

Технические характеристики пускателей серии ИРБИ-61 (ИРБИС, Новосибирск)

Модель	Мощность двигателя, кВт	Номинальный ток нагрузки, A	Исполне-	Габаритные размеры, мм	Масса,
110	110	200	IP20	500 300 590	47
200	200	400	IP20	600 400 590	65
315	315	555	IP20	600 400 590	65

Таблица П.1.4.9

Технические характеристики пускателей серии КЭП (AO «ЗВИ», Москва)

Модель	Мощность двигателя, кВт	Номинальный ток нагрузки, А	Исполне-	Габаритные размеры, мм	,
MPM-M	45250	До 450	IP31, IP00	588/380 542/ 145 317/217	42/12
УПТ-2	45250	До 450	IP54	660 235 815	55

Продолжение табл.П.1.4.9

Модель	Мощность двигателя, кВт	Номинальный ток нагрузки, A	Исполне-	Габаритные размеры, мм	Масса, кг
БУ АЭК	45350	До 600	IP54, IP00	555 230 700	50

Таблица П1.4.10

Технические характеристики пускателей серии УПР1 (OAO «ЧЭАЗ», Чебоксары)

Модель	Мощность двигателя, кВт	Номинальный ток нагрузки, А	Исполнение	Габаритные размеры, мм
1	7,5	25	IP00	242 268 280
2	30	63	IP00	242 480 370
3	100	160	IP00	242 500 360
4	200	400	IP00	400 1000 370

П.1.5 Реле

Реле представляют собой слаботочные аппараты, предназначенные ДЛЯ использования В схемах управления, автоматики, защиты и сигнализации самых разнообразных установок, а также коммутации электрических цепей. Область применения реле очень широкая. Они используются в качестве коммутационных аппаратов, датчиков тока, напряжения и мощности, промежуточных элементов для передачи команд из одной цепи в другую и размножения сигналов, датчиков времени и различных физических переменных и технологических параметров.

Отличительной особенностью реле является скачкообразное изменение его состояния при достижении входным воздействием на него определенного уровня. По своему исполнению реле делятся на электромагнитные (контактные), полупроводниковые (бесконтактные) и герметичные.

Промежуточные электромагнитные реле применяются в основном для коммутации электрических цепей и размножения контактов других электрических аппаратов. В табл. П.1.5.1

приведены параметры некоторых промежуточных реле, при этом буквой р обозначены размыкающие контакты, а буквой з - замыкающие.

Электромагнитные реле постоянного тока серии РЭВ-800 применяются в схемах управления в качестве реле тока, напряжения, времени и промежуточных, а РЭВ-810 — в качестве реле тока и напряжения. Они изготовляются с катушками на напряжение от 12 до 220 В и могут иметь от одного до четырех контактов.

В качестве промежуточных применяются также реле типов РП-250, РП-220, РП-230, РП-251, РП-252, РП-253, РП-321, РП-341, РП-42 и ряд других, которые могут использоваться и как реле напряжения.

Реле времени представляет собой устройство, контакты которого замыкаются или размыкаются с некоторой выдержкой времени после получения сигнала управления.

Таблица П.1.5.1 Технические характеристики промежуточных реле

Тип	Число		нальное кение, В	Длительный ток	
	контактов	постоянное переменное		контактов, А	
ПЭ-20	4p + 43	-	12240	5	
ПЭ-21	48	12200	12380	5	
ПЭ-23	$3_3 + 3_9$	12110	12240	4	
РП-23	5	12220	-	-	
РП-41, РП-42	8,4	12220	-	10	
ЭП-41В	36	-	36500	16	
РП-8, РП-9, РП-11, РП-12	17	24220	24220	-	
РПШ-0	412	-	1250	12	
МКУ-48	2 8	12220	24380	5	

Электромагнитное реле времени отличается от обычного реле наличием на магнитопроводе магнитной трубки (гильзы), которая и обеспечивает выдержку времени реле при отключении его катушки от источника питания.

Включение реле времени происходит, как у обычного электромагнитного реле. Выдержка времени обеспечивается за счет

замедления возврата контактной системы реле в исходное положение из-за более медленного спадания магнитного потока при снятии с катушки напряжения. В соответствии с таким принципом действия электромагнитное реле времени обеспечивает выдержку при размыкании замыкающего контакта и замыкании размыкающего контакта. Выдержка времени реле регулируется путем установки латунной немагнитной прокладки ступенчато или плавно за счет изменения натяжения пружины.

В табл. П.1.5.2 приведены параметры электромагнитных реле времени типов РЭВ-80, РЭВ-800 и РЭВ-810.

Моторное (электромеханическое) реле времени в своей основе имеет специальный низкоскоростной двигатель и редуктор с большим передаточным числом. На выходном валу редуктора укрепляется рычаг, начальное положение которого устанавливается по шкале уставок времени реле. Рычаг управляет работой вспомогательных контактов, которыми, в свою очередь, включается выходное электромагнитное реле.

Технические характеристики выпускаемых моторных реле времени типов E-510 и PB приведены в табл. П.1.5.2. Реле типа PBM-12 способно обеспечить выдержку времени в пределах 0,5...4 с, а реле типа PBM-13 - 1...10 с.

Механическое реле времени имеет замедлитель виде анкерного механизма, управляемого электромагнитом. При подаче напряжения на электромагнит (начало отсчета времени) его якорь пружину анкерного механизма аналогично Последний, начав работать, перемещает подвижный контакт реле. После заданного времени, определяемого положением (уставкой) неподвижного контакта реле, происходит замыкание контактной системы, что и определяет конец отсчета времени. Параметры анкерных реле времени типов ЭВ-100 и ЭВ-200 даны в табл. П.1.5.2.

Некоторые механические реле времени управляются не электромагнитом, а подвижной частью контактора. В этом случае запуск в работу анкерного механизма происходит сразу же после включения контактора. Такие реле времени получили название маятниковых.

В схемах электронных реле времени обычно используют различные полупроводниковые элементы (чаще всего транзисторные) и конденсаторы, время разряда или заряда которых и определяет выдержку времени. Их выходной каскад реализуется на обычном

электромагнитном реле. Характеристики полупроводниковых реле времени типов ВЛ-23 и ВЛ-37 приведены в табл. П.1.5.2.

Таблица П.1.5.2 Технические характеристики реле времени

Тип реле	Напря-	Выдержка	TOB		Ток через контакты, А			
	жение, В	времени, с	3	P	длитель- ный	отклю- чения	вклю- чения	
РЭВ-80	12, 24, 48	0,251,3	1,2	1,2	10	215	1080	
РЭВ-800	12,24,48, 110,220	0,255,5	1,2	1,2	10	115	1080	
РЭВ-810	12,24,48, 110,220	0,253,8	1,2	1,2	10	140	1020	
ЭВ-100	24,48, 110,220	0,120	1	-	35	15	-	
ЭВ-200	127, 220	0,120	1	1	35	25	-	
E-510	110,220	1360	-	4	5	2	-	
PB-4	127, 220, 380	-	1	1	-	-	-	
ВЛ-23	110,220	1100, 6600			-	-	-	
ВЛ-37	24	0,110, 0,2200	-	-	4	-	-	
РВГ-20111	12,24	0,20,7	-	-	0,1	-	-	
PC-30	24, 240	190		-	2,5	-	_	

Электронные реле времени типа ВЛ-43 обеспечивают выдержку времени от 0,1 до 200 с, реле типа ВЛ-48 - от 0,1 до 100 с, имеют номинальный ток 4 A, номинальное напряжение питания 110 и 220 В и могут коммутировать мощность нагрузки до 160 ВА.

Реле герметичными времени контактами имеют Ty особенность, герметизированы что ИХ контакты являются И магнитопровода реле. одновременно частью Герметизация И контактов повышает износостойкость и надежность реле в работе. В настоящее время разработаны герметичные контакты (герконы) на токи включения до 180 A, токи отключения до 60 A при номинальном токе 6,3 A. В табл. П.1.5.2 приведены параметры реле времени с герконами типов РС-30 и РВГ-20111.

Реле предназначены максимального тока ДЛЯ защиты контролируемых цепей и устройств от повышения тока сверх серии определенной величины. Реле тока PT-40 позволяют осуществлять токовую защиту с уставками от 0,05 (реле РТ-40/0,2) до 200 А (реле РТ-40/200) и могут коммутировать нагрузку мощностью до 60 Вт в цепях постоянного тока и мощностью до 300 Вт в цепях переменного тока.

Реле тока серии РТ-80 выпускаются на номинальный ток 5 и 10 А и могут иметь уставку защиты от 2 до 10 А. Замыкающие контакты этих реле способны коммутировать ток до 5 А при напряжении до 250 В, а размыкающие - переменный ток до 2 А и постоянный ток до 0,5 А при том же напряжении.

Реле максимального тока типов РЭВ-200, РЭВ-310 и РЭВ-830 применяются для защиты цепей постоянного тока величиной от 1,5 до 600 A.

В качестве реле максимального тока в схемах электропривода применяются реле мгновенного действия типов РЭВ-570 для использования в цепях постоянного тока от 0,6 до 1200 А и РЭВ-571Т для использования в цепях переменного тока с уровнем от 0,6 до 630 А. Они допускают регулировку своей уставки (тока срабатывания) в пределах $(0,7 \dots 3)I_{\text{ном}}$ (РЭВ-570) и $(0,7 \dots 2)I_{\text{ном}}$ (РЭВ-571Т) с точностью до $\pm 10\%$ и имеют время срабатывания порядка 0,05 с.

Реле автоматики, защиты и сигнализации имеют самое разнообразное назначение и исполнение. К наиболее употребимым в схемах электроснабжения, автоматики и защиты относятся:

реле направления мощности РБМ-170/270, обеспечивающие правильный выбор направления электрической мощности;

реле прямой РНФ-2, обратной РНФ-3 и нулевой РНН-57 последовательностей напряжения, реагирующие на соответствующие напряжения при возникновении аномальных ситуаций;

реле ДЗТ-11, предназначенные для дифференциальной защиты одной фазы трансформаторов;

реле активной РБМ-275 и реактивной РБМ-276 мощности, предназначенные для контроля уровней соответствующих мощностей;

реле сигнальное типа РУ-21 и блоки сигнальных реле типа СЭ-2,

реагирующие на определенные уровни тока или напряжения;

реле счета импульсов типов Е-531, Е-526, РСИ-1, РСИ-2, осуществляющие счет электрических импульсов.

В табл. П.1.5.3 приведены параметры тепловых реле серии ТРН, применяемые в комплекте с магнитными пускателями для защиты электрических цепей OT перегрузок. Номинальный ток несрабатывания нагревательных элементов реле может регулироваться в пределах +5%. Допускаемое время протекания тока, равного 1,21 от номинального тока нагревательных элементов, составляет не более 20 мин.

Таблица П.1.5.3 Технические характеристики тепловых реле серии ТРН

Тип реле	Максимальный ток, А	Номинальные токи несрабатывания нагревательных элементов реле, А
TPH-10A	3,2	0,35; 0,4; 0,5; 0,63; 0,8; 1,25; 1,6; 2,0; 2,5
TPH-10	10	0,5; 0,63; 0,8; 1,25; 1,6; 2,0; 2,5; 4; 5; 6,3; 8; 10
TPH-25	25	5; 6,3; 8; 10; 12,5; 16; 20; 25
TPH-40	40	12,5; 16; 20; 25; 32; 40
TPH-63	63	63

П.2 Синхронные электрические двигатели

Синхронные двигатели общего назначения выпускаются мощностью от 100 до нескольких десятков тысяч киловатт и имеют скорость вращения от 100 до 3000 об/мин. Они изготовляются с обмоткой возбуждения на явнополюсном или неявнополюсном роторе и с роторами в виде постоянных магнитов или в виде зубчатого цилиндра.

В табл. П.2.1 содержится общая характеристика различных серий синхронных двигателей.

Таблица П.2.1 Технические характеристики синхронных двигателей

Тип	P_{H} , MBT	$n_{_{\scriptscriptstyle H}}$, об/мин	$U_{_{\scriptscriptstyle H}}$, $\kappa \mathbf{B}$	Особенности исполнения и назначение
СД2	0,1321,0	500; 600	0,38	Горизонтальные, защищенные, с самовентиляцией; тиристорное возбуждение; общего назначения
СД3	0,161,0	500; 600	0,38	Горизонтальные, закрытые, с принудительной вентиля- цией, с электромашинной системой возбуждения; общего назначения
БСДК, БСДКП	0,2	500	0,38	Открытые, с самовентиляцией (БСДК) и взрывозащищенные с принудительной вентиляцией (БСДКП); безщеточная система возбужения; для привода компрессоров

В табл. П.2.2 приведены параметры синхронных двигателей серий СД2, (50 Гц, $\cos \varphi = 0.9$ при перевозбуждении).

Таблица П.2.2 Технические характеристики синхронных двигателей серии СД2

					_	ско-	Ponés	232 H O		
Тип	P_{H} ,	$U_{_{\scriptscriptstyle H}}$,	$ \eta_{_{\scriptscriptstyle H}}$,	$\frac{M_{\text{max}}}{M}$		ые іные	Возбу		J,	Mac-
I VIII	кВт	кВ	%	$M_{_{\scriptscriptstyle H}}$	I_n	M_n	U_{ϵ} ,	$I_{_{\scriptscriptstyle{6}}},$	кг•м ²	са, т
					$I_{_{\scriptscriptstyle H}}$	$\overline{M}_{_{\scriptscriptstyle H}}$	B	A		
СД2-85/18-12	132	0,38	90,9	1,7	4,5	1,0	25	137	29	1,67
СД2-85/29-12	200	0,38	92,4	1,7	5,0	1,1	32	129	45	2,12
СД2-85/29-10	250	0,38	93,2	1,7	5,5	1,2	33	133	45	2,14
СД2-74/40-8	315	0,38	94,0	1,7	5,5	1,2	34	160	26	2,05

Приложение 3

П.3 Асинхронные двигатели

Параметры основных серий трехфазных АД приведены в табл. П.3.1

Таблица П.3.1 Технические характеристики трехфазных асинхронных двигателей

Серия, высота оси вращения Двигател	Номи- нальная мощность, кВт и с короткоз	Синхронная частота вращения, об/мин	Номи- нальное напряжен ие, В	Исполнение, область применения щего применения
RA (71280 мм)	0,37100	750; 1000; 1500; 3000	220/380	Защищенные и закрытые, обдуваемые, широкого применения
6А(315 мм)	90200	750; 1000; 1500; 3000	220/380; 380/660	Закрытые, обдуваемые, широкого применения
5A (5AH) (71335 мм)	0,37 400	750; 1000; 1500; 3000	220/380; 380/660	Защищенные и закрытые, обдуваемые, широкого применения
АИР (50 355мм)	0,19315	750; 1000; 1500; 3000	220/380; 380/660; 220; 380; 660	Открытые, защищенные, закрытые, обдуваемые, продуваемые, широкого применения

Продолжение табл. П.3.1

	Номи-	Сипуронная	Номи-	
Серия,	нальная	Синхронная частота	нальное	Исполнение,
высота оси	мощность,	вращения,	напряжен	область
вращения	кВт	об/мин	ие, В	применения
Пенгател		I .		щего применения
доисинся	u e koponikos	рамкнутым ре 	тором оо	Защищенные и
		500: 600:	220/380;	' '
4A	0.06 400	500; 600;	,	закрытые,
(56355 мм)	0,06400	750; 1000;	380/660;	обдуваемые,
		1500; 3000	220; 380	широкого
				применения
				Закрытые,
		750; 1000;	380/660;	обдуваемые, с
4AP	1545	1500	220/380	повышенным
		1300	220/300	пусковым
				моментом
				Закрытые,
	0,3 63	750; 1000;	220; 380;	обдуваемые, с
4AC	при ПВ =	1500; 3000	220/380;	•
	40 %	1300, 3000	380/660	повышенным
				скольжением
	Краново-л	металлургиче	ские двига	тели
				Характеризуются
				повышенными
	1.4. 22		280/220.	перегрузочной способностью и
MTKF	$1,422$ при $\Pi B = 40 \%$	750; 1000	380/220;	
	11B - 40%		500	пусковыми
				моментами, для
				привода крановых
				механизмов
				То же, для
NATITI	337 при	750. 1000	380/220;	приводов
MTKH	$\Pi B = 40 \%$	750; 1000	500	металлургического
				производства
		l .		

Продолжение табл. П.3.1

Серия, высота оси вращения	Номи- нальная мощность, кВт <i>Двига</i>	Синхронная частота вращения, об/мин тели с фазны	Номи- нальное напряжен ие, В м ротором	Исполнение, область применения
4AHK, 4AK	15400	750; 1000; 1500	220/380; 380/660	Защищенные (4АНК) или закрытые (4АК), общего назначения
5АНК	45400	600; 750; 1000; 1500	220/380; 380/660	Защищенные или закрытые, общего назначения
АКП	55125	1000; 1500	220/380; 380/660	Защищенные, для привода прессов, работающих в закрытых помещениях
MTF, MTH	1,430; 3 118	600; 750; 1000	220/380; 240/415; 400; 500	Защищенные, с независимой вентиляцией, для привода крановых механизмов (МТР) и механизмов металлургического производства (МТН)

Примеры расшифровки обозначений АД:

двигатель типа 4A160M6У3: 4 - номер серии; А - асинхронный двигатель (4AH - защищенного исполнения); 160 - высота оси вращения; М - средняя длина статора (S - малая длина, L - большая длина); 6 - число полюсов двигателя (синхронная скорость вращения 1000 об/мин); УЗ - климатическое исполнение (У - умеренный

климат) и категория размещения;

двигатели серий 5A и 6A, где 5 и 6 - номера серий; серий RA - российские асинхронные; АИР - асинхронные Интерэлектро (Р - исполнение с согласованными по международным стандартам установочными размерами); остальные элементы условных обозначений соответствуют серии 4A;

двигатель МТКВ412-8: крановый асинхронный двигатель с короткозамкнутым ротором (К), с изоляцией класса В, с условными размерами 412, с числом полюсов 8 (синхронная скорость 750 об/мин).

П.3.1 Двигатели серии 4А

Серия 4А является массовой серией АД для широкого применения и имеет различные модификации:

с короткозамкнутым и фазным роторами;

многоскоростные;

с повышенными скольжением и пусковым моментом;

малошумные;

со встроенными температурной защитой и электромагнитными тормозами;

тропического, влаго- и морозостойкого, пылезащитного, рудничного, сельскохозяйственного и химостойкого исполнений.

К специальным исполнениям относятся АД для приводов лифтов, деревообрабатывающих станков и для использования в частотно-регулируемых электроприводах.

Двигатели мощностью от 0,06 до 0,37 кВт выпускаются на напряжение 220 и 380 В, мощностью от 0,55 до 11 кВт - на напряжение $220,\ 380$ и 660 В, мощностью от 132 до 400 кВт - на напряжение 380/660 В.

Технические данные АД серии 4A со степенью защиты IP44 и способом охлаждения ICA0141 приведены в табл. П.3.1.1, а со степенью защиты IP23 и способом охлаждения ICA01 - в табл. П.3.1.2. В таблицах приняты следующие обозначения: P_H , $I_{_H}$, $M_{_H}$,

 $n_{_{\! H}}, \; \eta_{_{\! H}}, \; \cos \varphi_{_{\! H}}$ - соответственно номинальные мощность, ток, момент, частота вращения, КПД и коэффициент мощности; $M_{_{\rm max}}$, $M_{_{\! n}}, \; M_{_{\! min}}$, - максимальный (критический), пусковой и минимальный

моменты АД; I_n - пусковой ток; J — момент инерции ротора.

АД с фазным ротором серий 4АК и 4АКН выпускаются мощностью от 5,5 до 400 кВт закрытыми обдуваемыми (степень защиты IP44) и защищенными (степень защиты IP23). Обмотка ротора соединена в звезду и выведена на контактные кольца. Параметры АД с контактными кольцами приведены в табл. П.3.1.3, где через S_{H} обозначено номинальное скольжение АД.

Таблица П.3.1.1 Технические характеристики двигателей серии 4A (IP44, ICA0141)

	P_{H} , При номинальном режиме				$M_{\rm max}$	M_n	M _{min}	I_n
Тип	кВт	$n_{_{\!\scriptscriptstyle H}},$ об/мин	$\eta_{_{\scriptscriptstyle{H}}}$,	$\cos \varphi_{_{\scriptscriptstyle{H}}}$	$\frac{M_{\text{max}}}{M_{\mu}}$	$M_{\scriptscriptstyle H}$	$M_{_{H}}$	$I_{\scriptscriptstyle H}$
Синул	ากมมสต	и частот		ามคนบร	1	<u> </u> 5/мин		
4AA50A2Y3	0,09	2740	60	0.7	2,2	2,0	1,2	5,0
4AA50B2Y3	0,12	2710	63	0,7	2,2	2,0	1,2	5,0
4АА56А2УЗ	0,18	2800	66	0,76	2,2	2,0	1,2	5,0
4АА56ВУЗ	0,25	2770	68	0,77	2,2	2,0	1,2	5,0
4А63А2У3	0,37	2750	70	0,86	2,2	2,0	1,2	5,0
4А63В2У3	0,55	2740	73	0,86	2,2	2,0	1,2	5,0
4А71А2У3	0,75	2840	77	0,87	2,2	2,0	1,2	5,5
4А71В2У3	1,1	2810	77,5	0,87	2,2	2,0	1,2	5,5
4А80А2У3	1,5	2850	81	0,85	2,2	2,0	1,2	6,5
4А80В2У3	2,2	2850	83	0,87	2,2	2,0	1,2	6,5
4A90L2Y3	3	2840	84,5	0,88	2,2	2,0	1,2	6,5
4А100S2У3	4	2880	86,5	0,89	2,2	2,0	1,2	7,5
4A100L2У3	5,5	2880	87,5	0,91	2,2	2,0	1,2	7,5
4A112M2У3	7,5	2900	87,5	0,88	2,2	2,0	1,0	7,5
4A132M2У3	11	2900	88	0,9	2,2	1,6	1,0	7,5
4А160S2У3	15	2940	88	0,91	2,2	1,4	1,0	7,5
4A160M2У3	18,5	2940	88,5	0,92	2,2	1,4	1,0	7,5
4А18032У3	22	2940	88,5	0,91	2,2	1,4	1,0	7,5
4A180M2У3	30	2945	90,5	0,9	2,2	1,4	1,0	7,5
4A200M2У3	37	2945	90	0,89	2,2	1,4	1,0	7,5

Продолжение табл. П.3.1.1

		При но	мина	льном						
T	P_{H} ,	pe	ежим	e	M_{max}	M_n	M_{\min}	I_n		
Тип	кВт	$n_{_{\scriptscriptstyle H}}$,	$\eta_{_{\scriptscriptstyle H}}$,	$\cos \varphi_{_{\scriptscriptstyle{H}}}$	$\overline{M}_{\scriptscriptstyle H}$	$\overline{M}_{\scriptscriptstyle H}$	$M_{\scriptscriptstyle H}$	$\overline{I}_{\scriptscriptstyle H}$		
		об/мин	%	7 н						
Синхр	ронная	частот	іа вра	щения .	3000 об	/мин				
4A200L2У3	45	2945	91	0,9	2,2	1,4	1,0	7,5		
4A225M2У3	55	2945	91	0,92	2,2	1,2	1,0	7,5		
4A250S2У3	75	2960	91	0,89	2,2	1,2	1,0	7,5		
4A250M2У3	90	2960	92	0,9	2,2	1,2	1,0	7,5		
4А28082УЗ	110	2970	91	0,89	2,2	1,2	1,0	7,0		
4A280M2У3	132	2970	91,5	0,89	2,2	1,2	1,0	7,0		
4А315Ѕ2УЗ	160	2970	92	0,9	0,9	1,0	0,9	7,0		
4A315M2У3	200	2970	92,5	0,9	0,9	1,0	0,9	7,0		
4А35582УЗ	250	2970	92,5	0,9	0,9	1,0	0,9	7,0		
4A355M2У3	315	2970	93	0,91	0,9	1,0	0,9	7,0		
Синхронная частота вращения 1500 об/мин										
4АА50А4У3	0,06	1389	50	0,6	2,2	2,0	1,2	5,0		
4АА50В4У3	0,09	1370	55	0,6	2,2	2,0	1,2	5,0		
4АА56А4УЗ	0,12	1375	63	0,66	2,2	2,0	1,2	5,0		
4АА56В4УЗ	0,18	1365	64	0,64	2,2	2,0	1,2	5,0		
4АА63А4У3	0,25	1380	68	0,65	2,2	2,0	1,2	5,0		
4АА63В4У3	0,37	1365	68	0,69	2,2	2,0	1,2	5,0		
4А71А4У3	0,55	1390	70,5	0,7	2,2	2,0	1,6	4,5		
4А71В4У3	0,75	1390	72	0,73	2,2	2,0	1,6	4,5		
4A80A4У3	1,1	1420	75	0,81	2,2	2,0	1,6	5,0		
4А80В4У3	1,5	1415	77	0,83	2,2	2,0	1,6	5,0		
4A90L4Y3	2,2	1425	80	0,83	2,2	2,0	1,6	6,0		
4A100S4У3	3,0	1435	82	0,83	2,4	2,0	1,6	6,0		
4A100L4У3	4,0	1430	84	0,84	2,4	2,0	1,6	6,0		
4A112M4У3	5,5	1445	85,5	0,85	2,2	2,0	1,6	7,0		
4A132S4У3	7,5	1455	87,5	0,86	3,0	2,2	1,7	7,5		
4A132M4У3	11	1460	84,5	0,87	3,0	2,2	1,7	7,5		
4A160S4У3	15	1465	88,5	0,88	2,3	1,4	1,0	7,0		
4A160M4У3	18,5	1465	89,5	0,88	2,3	1,4	1,0	7,0		
4A180S4У3	22	1470	90	0,9	2,3	1,4	1,0	6,5		
4A180M4У3	30	1470	91	0,9	2,3	1,4	1,0	6,5		

Продолжение табл. П.3.1.1

	При номинальном							
T	P_{H} ,	pe	ежим	e	M_{max}	M_n	M_{\min}	I_n
Тип	кВт	$n_{_{\scriptscriptstyle H}}$,	$\eta_{_{\scriptscriptstyle H}}$,	000 (0	$\overline{M}_{\scriptscriptstyle H}$	$\overline{M}_{\scriptscriptstyle H}$	$\overline{M}_{\scriptscriptstyle H}$	$\overline{I_{_{\scriptscriptstyle H}}}$
	KDI	об/мин	%	$\cos \varphi_{_{\scriptscriptstyle{H}}}$	n	,,	п	Н
Синхі	⊥ ท∩หหสя	частот		 1111 <i>Р</i> 1111Я	1500 of	<u> </u> 5/мин		
4А200М4У3	37	1475	91	0,9	2,5	1,4	1,0	7,0
4A200L4Y3	45	1475	92	0,9	2,5	1,4	1,0	7,0
4A225M4У3	55	148	92,5	0,9	2,5	1,3	1,0	7,0
4A250S4Y3	75	1480	93,0	0,90	2,3	1,2	1,0	7,0
4A250M4У3	90,0	1480	93,0	0,91	2,3	1,2	1,0	7,0
4A280S4Y3	110	1470	92,5	0,90	2,0	1,2	1,0	5,5
4A280M4У3	132	1480	93,0	0,90	2,0	1,3	1,0	5,5
4A315S4У3	160	1480	93,5	0,91	2,2	1,3	0,9	6,0
4A315M4У3	200	1480	94,0	0,92	2,2	1,3	0,9	6,0
4A355S4У3	250	1485	94,5	0,92	2,0	1,2	0,9	7,0
4A355M4У3	315	1485	94,5	0,92	2,0	1,2	0,9	7,0
Синхр	ронная	частот	іа вра	щения	1000 06	/мин		'
4АА63А6У3	0,18	885	56,0	0,62	2,2	2,2	1,5	3,0
4А63В6У3	0,25	890	59,0	0,62	2,2	2,2	1,5	3,0
4А71А6У3	0,37	910	64,5	0,69	2,2	2,0	1,8	4,0
4А71В6У3	0,55	900	67,5	0,71	2,2	2,0	1,8	4,0
4А80А6У3	0,75	915	69,0	0,74	2,2	2,0	1,6	4,0
4А80В6У3	1,10	920	74,0	0,74	2,2	2,0	1,6	4,0
4A90L6У3	1,50	935	75,0	0,74	2,2	2,0	1,7	4,5
4A100L6У3	2,20	950	81,0	0,73	2,2	2,0	1,6	5,0
4А112МА6У3	3,0	955	81,0	0,76	2,5	2,0	1,8	6,0
4А112МВ6У3	4,0	950	82,0	0,81	2,5	2,0	1,8	6,0
4A132S6У3	5,50	965	85,0	0,80	2,5	2,0	1,8	6,5
4А132М6У3	7,50	970	85,5	0,81	2,5	2,0	1,8	6,5
4A160S6У3	11,0	975	86,0	0,86	2,0	1,2	1,0	6,0
4А160М6У3	15,0	975	87,5	0,87	2,0	1,2	1,0	6,0
4А180М6У3	18,5	975	88,0	0,87	2,0	1,2	1,0	5,0
4А200М6У3	22,0	975	90,0	0,90	2,4	1,3	1,0	6,5
4A200L6У3	30,0	980	90,5	0,90	2,4	1,3	1,0	6,5
4A250S6У3	45,0	985	91,5	0,89	2,1	1,2	1,0	6,5
4А250М6У3	55,0	985	91,5	0,89	2,1	1,2	1,0	6,5

Продолжение табл. П.3.1.1

	льном											
TT.	P_{H} ,	pe	ежим	e	M_{max}	M_n	M_{\min}	I_n				
Тип	кВт	$n_{_{\scriptscriptstyle H}}$,	$\eta_{_{\scriptscriptstyle H}}$,	$\cos \varphi_{_{_{\!\it H}}}$	$M_{\scriptscriptstyle H}$	$\overline{M}_{\scriptscriptstyle H}$	$\overline{M}_{\scriptscriptstyle H}$	$\overline{I}_{_{\scriptscriptstyle{H}}}$				
		об/мин	%	т н								
Синхр	ронная	частот	іа вра	щения	1000 ob	/мин						
4A280S6Y3 75,0 985 92,0 0,89 2,2 1,4 1,2 5												
4А280М6У3	90,0	985	92,5	0,89	2,2	1,4	1,2	5,5				
4А315Ѕ6УЗ	110	985	93,0	0,90	2,2	1,4	0,9	6,5				
4А315М6У3	132	985	93,5	0,90	2,2	1,4	0,9	6,5				
4А355S6УЗ	160	985	93,5	0,90	2,2	1,4	0,9	6,5				
4A355M6Y3	200	985	94,0	0,90	2,2	1,4	0,9	6,5				
Синх	ронна	я частоп	па вр	ащения	750 обл	мин						
4А71В8У3	0,25	680	56,0	0,65	1,7	1,6	1,2	3,0				
4А80А8У3	0,37	675	61,5	0,65	1,7	1,6	1,2	3,5				
4А80В8У3	0,55	700	64,0	0,65	1,7	1,6	1,2	3,5				
4A90LA8У3	0,75	700	68,0	0,62	1,9	1,6	1,2	3,5				
4A90LB8У3	1,10	700	70,0	0,68	1,9	1,6	1,2	3,5				
4A100L8У3	1,50	700	74,0	0,65	1,9	1,6	1,2	4,0				
4A112MA8У3	2,20	700	76,5	0,71	2,2	1,9	1,4	5,0				
4A112MB8У3	3,0	700	79	0,74	2,2	1,9	1,4	5,0				
4А132S8У3	4	720	83	0,7	2,6	1,9	1,4	5,5				
4A132M8У3	5,5	720	83	0,74	2,6	1,9	1,4	5,5				
4А160Ѕ8УЗ	7,5	730	86	0,75	2,2	1,4	1,0	6,0				
4A160М8У3	11	730	87	0,75	2,2	1,4	1,0	6,0				
4A180М8У3	15	730	87	0,82	2,0	1,2	1,0	6,0				
4A200M8У3	18,5	735	88,5	0,84	2,2	1,2	1,0	5,5				
4A200L8У3	22	730	88,5	0,84	2,0	1,2	1,0	5,5				
4A225M8У3	30	735	90	0,81	2,1	1,3	1,0	6,0				
4A250S8У3	37	735	90	0,83	2,0	1,2	1,0	6,0				
4A250М8У3	45	740	91	0,84	2,0	1,2	1,0	6,0				
4A280S8У3	55	735	92	0,84	2,0	1,2	1,0	5,5				
4A280M8У3	75	735	92,5	0,85	2,0	1,2	1,0	5,5				
4А315Ѕ8УЗ	90	740	93	0,85	2,3	1,2	0,9	6,5				
4A315M8У3	110	740	93	0,85	2,3	1,2	0,9	6,5				
4А355Ѕ8УЗ	132	740	93,5	0,85	2,2	1,2	0,9	6,5				
4А355М8У3	160	740	93,5	0,85	2,2	1,2	0,9	6,5				

Продолжение табл. П.3.1.1

	P_{H} ,	При но	мина		M	<i>M</i>	M_{\min}	I_n
Тип	кВт	$n_{_{\scriptscriptstyle H}}$,	$\eta_{_{\scriptscriptstyle{H}}},$	$\cos \varphi_{_{\scriptscriptstyle H}}$	$\frac{m_{\max}}{M_{_H}}$	$\frac{n}{M_{_{\scriptscriptstyle H}}}$	$M_{_{H}}$	$I_{_{\scriptscriptstyle{H}}}$
Comm		об/мин	%	~~~~	600 05	/		
	Γ	я частоп	_				ı	.
4A250S10У3	30	590	88	0,81	1,9	1,2	1,0	6,0
4A250M10У3	37	590	89	0,81	1,9	1,2	1,0	6,0
4A280M510У	37	590	91	1,78	1,8	1,0	1,0	6,0
4A280M10У3	45	590	91,5	0,78	1,8	1,0	1,0	6,0
4A315S10У3	55	590	92	0,79	1,8	1,0	0,9	6,0
4А315М10У3	75	590	92	0,8	1,8	1,0	0,9	6,0
4A355S10У3	90	590	92,5	0,83	1,8	1,0	0,9	6,0
4А355М10У3	110	590	93	0,83	1,8	1,0	0,9	6,0
Синх	ронна	я частоп	па вр	ащения	500 обл	мин		
4A315S12У3	45	490	90,5	0,75	1,8	1,0	0,9	6,0
4А315М12У3	55	490	91	0,75	1,8	1,0	0,9	6,0
4A355S12У3	75	490	91,5	0,76	1,8	1,0	0,9	6,0
4А355М12У3	90	495	92	0,76	1,8	1,0	0,9	6,0

Таблица П.3.1.2 Технические характеристики двигателей серии 4A (IP23, ICA01)

	P_{H} ,	При но	мина Эжим		$M_{\rm max}$	M_n	M_{\min}	I_n
Тип	кВт		$\eta_{_{\scriptscriptstyle{H}}}$,	$\cos \varphi_{_{\scriptscriptstyle{H}}}$	$M_{_{H}}$	$M_{\scriptscriptstyle H}$	$M_{_{\scriptscriptstyle H}}$	$I_{\scriptscriptstyle H}$
		об/мин	%					
Синхр	онная	частот	іа вра	щения .	3000 o6	/мин		
4AH160S2У3	22,0	2915	88	0,88	2,2	1,3	1,0	7,0
4АН160М2У3	30,0	2915	90,0	0,91	2,2	1,3	1,0	7,0
4АН180S2У3	37,0	2945	91,0	0,91	2,2	1,2	1.0	7,0
4AH180М2У3	45,0	2945	91,0	0,91	2,2	1,3	1,0	7,0
4AH200M2У3	55,0	2940	91,0	0,90	2,5	1,3	1,0	7,0
4AH200L2У3	75,0	2940	92,0	0,90	2,5	1,3	1,0	7,0
4АН225М2У3	90,0	2945	92,0	0,88	2,2	1,2	1,0	7,0

	n	При но						
Тип	P_{H} ,	pe	ЭЖИМ	<u>e</u>	M_{max}	M_n	M_{\min}	$\frac{I_n}{}$
ТИП	кВт	$n_{_{\scriptscriptstyle H}}$,	$\eta_{_{\scriptscriptstyle H}}$,	$\cos \varphi_{_{\scriptscriptstyle H}}$	$M_{_{\scriptscriptstyle H}}$	$M_{_{\scriptscriptstyle H}}$	$M_{_{\scriptscriptstyle H}}$	$I_{_{\scriptscriptstyle H}}$
	KDI	об/мин	%	$\cos \varphi_{\scriptscriptstyle H}$				
Синхі	ронная	частот	а вра	щения .	3000 06	/мин		
4АН250S2УЗ	110,0	2950	93,0	0,86	2,2	1,2	1,0	7,0
4АН250М2У3	132,0	2945	93,0	0,88	2,2	1,2	1,0	7,0
4AH280S2У3	160,0	2960	94,0	0,90	2,2	1,2	1,0	6,5
4АН280М2У3	200,0	2960	94,5	0,90	2,2	1,2	1,0	6,5
4АН315М2У3	250,0	2970	94,5	0,91	2,1	1,0	0,9	6,0
4АН355S2УЗ	315	2970	94,5	0,92	2Д	1,0	0,9	7,0
4АН355М2У3	400	2970	95	0,92	2,1	1,0	0,9	7,0
Синхр	ронная	частот	іа вра	щения	1500 ob	/мин	•	•
4AH160S4У3	18,5	1450	88,5	0,87	2,1	1,3	1,0	6,5
4АН160М4У3	22	1458	90	0,88	2,1	1,3	1,0	6,5
4AH180S4У3	30	1465	90	0,84	2,2	1,2	1,0	6,5
4АН180М4У3	37	1470	90,5	0,89	2,2	1,2	1,0	6,5
4АН200М4У3	45	1475	91	0,89	2,5	1,3	1,0	6,5
4AH200L4У3	55	1475	92	0,89	2,5	1,3	1,0	6,5
4АН225М4У3	75	1475	92,5	0,89	2,2	1,2	1,0	6,5
4AH250S4У3	90	1480	93,5	0,89	2,2	1,2	1,0	6,5
4АН250М4У3	110	1475	93,5	0,89	2,2	1,2	1,0	6,5
4AH280S4У3	132	1470	93	0,89	2,0	1,2	1,0	6,0
4АН280М4У3	160	1470	93,5	0,9	2,0	1,2	1,0	6,0
4АН315Ѕ4УЗ	200	1475	94	0,91	2,0	1,2	0,9	6,0
4АН315М4У3	250	1475	94	0,91	2,0	1,2	0,9	6,0
4АН355Ѕ4УЗ	315	1485	94,5	0,91	2,0	1,0	0,9	7,0
4АН355М4У3	400	1485	94,5	•	2,0	1,0	0,9	7,0
Синхр	ронная	частот	іа вра	щения	1000 ob	/мин		i
4АН180S6УЗ	18,5	975	87	0,85	2,0	1,2	1,0	6,0
4АН180М6У3	22	975	88,5	0,87	2,0	1,2	1,0	6,0
4АН200М6У3	30	975	90	0,88	2,1	1,3	1,0	6,0
4AH200L6У3	37	980	90,5	0,88	2,1	1,3	1,0	6,5
4АН225М6У3	45	980	91	0,87	2,0	1,2	1,0	6,5
МАН250S6УЗ	55	985	92,5	0,87	2,0	1,2	1,0	6,5
4AH280S6У3	90,0	980	92,5	0,89	2,0	1,2	1,0	6,0

	n	При но						_
Тип	P_{H} ,	pe	ЭЖИМ(Т	2	M_{max}	M_n	M_{\min}	$\frac{I_n}{I_n}$
I VIII	кВт	$n_{_{\scriptscriptstyle H}}$,	$\eta_{\scriptscriptstyle H}$,	$\cos \varphi_{_{\scriptscriptstyle{H}}}$	$M_{_{\scriptscriptstyle H}}$	$M_{_{\scriptscriptstyle H}}$	$M_{_{\scriptscriptstyle H}}$	$I_{_{\scriptscriptstyle{\mathcal{H}}}}$
	1,21	об/мин	%	$\mathbf{cos}\varphi_{_{\mathit{H}}}$				
Синх	ронная	частот	а вра	щения	1000 06	/мин	l	
4АН280М6УЗ	110,0	980	92,5	0,89	2,0	1,2	1,0	6,0
4АН280S6У3	132,0	985	93,0	0,89	2,0	1,2	1,0	6,0
4АН280М6У3	160,0	985	93,5	0,89	2,0	1,2	1,0	6,0
4AH280S6У3	200,0	985	94,0	0,90	2,0	1,2	1,0	6,0
4АН280М6У3	250,0	985	94,0	0,90	2,0	1,2	1,0	6,0
Синх	ронная	н частоп	па вр	ащения	750 обл	⁄мин		
4AH180S8У3	15,0	730	86,0	0,80	1,9	1,2	1,0	5,5
4AH180М8У3	18,5	730	87,5	0,80	1,9	1,2	1,0	5,5
4AH200M8У3	22,0	730	89,0	0,84	2,0	1,2	1,0	5,5
4AH200L8У3	30,0	730	89,5	0,82	2,0	1,2	1,0	5,5
4АН225М8У3	37,0	735	90,0	0,81	1,9	1,2	1,0	5,5
4AH250S8У3	45,0	740	91,0	0,81	1,9	1,2	1,0	5,5
4AH250M8У3	55,0	735	92,0	0,81	1,9	1,2	1,0	6,0
4AH280S8У3	75,0	735	92,0	0,85	1,9	1,2	1,0	5,5
4АН280М8У3	90,0	735	92,5	0,86	1,9	1,2	1,0	5,5
4АН315S8У3	110,0	735	93,0	0,86	1,9	1,2	1,0	5,5
4АН315М8У3	132,0	735	93,0	0,86	1,9	1,2	1,0	5,0
4АН355Ѕ8УЗ	160,0	740	93,5	0,86	1,9	1,2	1,0	5,5
4АН355М8У3	200,0		94,0		1,9	1,2	1,0	5,5
Синх	ронная	я частоп	па вр	ащения	__ 600 обл	мин	İ	1
4AH280S10У3	45,0	585	90,0	0,81	1,8	1,0	1,0	5,5
4AH280M10У3	55,0	585	90,5	0,81	1,8	1,0	1,0	5,5
4АН315S10У3	75,0	590	91,0	0,82	1,8	1,0	0,9	5,5
4АН315М10У3	90,0	590	91,5	0,82	1,8	1,0	0,9	5,5
4АН355S10УЗ	110,0	590	92,0	0,83	1,8	1,0	0,9	5,5
4АН355М10У3	132,0	590	92,5	0,83	1,8	1,0	0,9	5,5
Синх	ронная	н частоп			500 обл	мин	1	.
4АН315S12У3	55,0	490	90,5	0,78	1,8	1,0	0,9	5,5
4AH315M12Y3	75,0	490	91,0	0,78	1,8	1,0	0,9	5,5
4АН355S12У3	90,0	490	91,5	0,77	1,8	1,0	0,9	5,5
4AH355M12Y:	110,0	490	92,0	0,77	1,8	1,0	0,9	5,5

Технические характеристики асинхронных двигателей с контактными кольцами

Тип	$P_{\!\scriptscriptstyle H},$ к $\!$ Вт	$\eta_{_{\scriptscriptstyle{H}}}$,	$\cos \varphi_{_{\scriptscriptstyle H}}$	S _H , %	$\frac{M_{\max}}{M_{_H}}$	Ток ротора, А	Напря- жение ротора, В	Мас-
Синхрог	нная ча	cmom	а вращ	ения	1500	об/мин		
4АК160S4У3	11	86,5	0,86	5,0	3,0	22	305	160
4АК160М4У3	14	88,5	0,87	4,0	3,5	29	300	185
4АК180М4У3	18	89	0,88	3,5	4,0	38	295	250
4АК200М4У3	22	90	0,87	2,5	4,0	45	340	305
4AK200LУ3	30	90,5	0,87	2,5	4,0	55	350	325
4АК225М4У3	37	90	0,87	3,5	3,0	160	160	415
4AK250SA4У3	45	91	0,88	3,0	3,0	170	230	555
4AК250SВ4У3	55	90,5	0,9	3,0	3,0	170	200	595
4АК250М4У3	71	91,5	0,86	2,5	3,0	170	250	640
Синх	сронная	часп	ота вр	аще	ния 10	00 об/ми	ıн	'
4AК160S6У3	7,5	82,5	_	5,0	I	18	300	170
4АК160М6У3	10	84,5	0,76	4,5	3,8	20	310	200
4АК180М6У3	13	85,5	0,8	4,5	4,0	25	325	240
4АК200М6У3	18,5	88	0,81	3,5	3,5	35	360	300
4AК200L6У3	22	88	0,8	3,5	3,5	45	330	315
4АК225М6У3	30	89	0,85	3,5	2,5	150	140	405
4AК250S6У3	37	89	0,84	3,5	2,5	165	150	540
4АК250М6У3	45	90,5	0,87	3,0	2,5	160	180	600
Синхро	рнная ча	acmon	па враи	<i></i> ених	я 750 с	об/мин		
4АК160Ѕ8УЗ	5,5	80	0,7	6,5	2,5	14	300	170
4AK160M8У3	7,5	82	0,7	6,0	3,0	16	290	200
4AK180М8У3	11	85,5	0,72	4,0	3,5	25	270	260
4АК200М8У3	15	86	0,7	3,5	3,0	28	360	300
4AК200L8У3	18,5	86	0,73	3,5	3,0	40	300	320
4АК225М8У3	22	87	0,82	4,5	2,2	140	102	400
4AК250S8У3	30	88,5	0,81	4,0	2,2	155	125	540
4АК250М8У3	37	89	0,8	3,5	2,2	155	148	595
Синх	сронная	част	пота вр	аще	ния 15	00 об/ми	lН	
4АНК160S4У3	14	86,5	0,85	5,0	3,0	27	330	140

Тип	<i>P_H</i> , кВт	$\eta_{_{\scriptscriptstyle{H}}}$,	$\cos \varphi_{_{\scriptscriptstyle H}}$	S _H , %	$\frac{M_{\max}}{M_{_H}}$	Ток ротора, А	Напря- жение ротора, В	Мас-
Синх	ронная	част	пота вр	аще	ния 15	00 об/ми	lH	
4АНК160М4У3	17	88	0,87	5,0	3,5	34	315	160
4АНК180S4У3	22	87	0,86	5,5	3,2	43	300	190
4АНК180М4У3	30	88	0,81	4,5	3,3	63	290	220
4АНК200М4У3	37	90	0,88	3,0	3,0	62	360	290
4АНК200L4У3	45	90	0,88	3,5	3,0	75	375	315
4АНК225М4У3	55	89,5	0,87	4,0	2,5	200	170	405
4AHК250SA4У3	75	90	0,88	4,5	2,3	250	180	500
4АНК250SВ4У3	90	91,5	0,87	4,0	2,5	260	220	540
4АНК250М4У3	110	92	0,9	3,5	2,5	260	250	585
4АНК280S4У3	132	92	0,88	2,9	2,0	330	251	725
4АНК280М4У3	160	92,5	0,88	2,6	2,0	330	300	775
4АНК315S4У3	200	93	0,89	2,5	2,0	396	312	910
4АНК315М4У3	250	93	0,9	2,5	2,0	425	360	990
4АНК355S4У3	315	93,5	0,9	2,2	2,0	460	420	1240
4АНК355М4У3	400	94	0,9	2,0	2,0	485	505	1380
Синх	ронная	част	іота вр	аще	ния 10	00 об/ми	lH	
4АНК180S6У3	13	83,5	0,81	7,0	3,0	42	205	180
4АНК180М6У3	17	85	0,82	6,0	3,0	32,5	335	200
4АНК200М6У3	22	88	0,81	3,5	3,0	37	380	285
4АНК200L6У3	30	88,5	0,82	4,0	3,0	46	375	315
4АНК225М6У3	37	89	0,86	4,0	1,9	180	140	400
4AНК250SA6У3	45	89,5	0,86	4,0	2,3	200	155	470
4АНК250SB6У3	55	91	0,88	3,5	2,5	185	190	510
4АНК250М6У3	75	91,5	0,85	3,0	2,5	200	250	585
4АНК280S6У3	90	90	0,88	3,6	1,9	277	202	685
4АНК280М6У3	110	91,5	0,87	3,6	1,9	297	230	735
4АНК315S6У3	132	92	0,88	3,0	1,9	320	257	845
4АНК315М6У3	160	92,5	0,88	3,0	1,9	352	291	910
4АНК355S6У3	200	93	0,89	2,5	1,8	411	304	1180
4АНК355М6У3	250	93	0,89	2,5	1,8	401	380	1305
Син.	хронна	я част	пота вр	раще	ения 7:	50 об/ми	н	
4АНК180Ѕ8УЗ	11	85	0,72	5,0	3,2	22,5	315	195

Тип	$P_{\!\scriptscriptstyle H},$ к $\!$ Вт	$\eta_{_{\scriptscriptstyle{H}}},$ %	$\cos \varphi_{_{\scriptscriptstyle H}}$	S _H , %	$\frac{M_{\text{max}}}{M_{H}}$	Ток ротора, А	Напря- жение ротора, В	Мас-
Син.	Н							
4АНК180М8У3	14	86,5	0,69	4,5	3,5	28	310	225
4АНК200М8У3	18,5	86	0,78	4,5	2,5	30	380	285
4АНК200L8У3	22	87	0,79	4,5	2,5	40	330	315
4АНК225М8У3	30	86,5	0,8	5,0	1,8	165	120	400
4AНК250SA8У3	37	87,5	0,8	5,5	2,2	190	115	475
4AHK250SB8У3	45	89	0,82	4,0	2,2	190	140	515
4АНК250М8У3	55	89,5	0,83	3,5	2,2	185	190	575
4АНК280Ѕ8УЗ	75	90,5	0,84	4,0	1,9	257	190	700
4АНК280М8У3	90	90,5	0,84	4,0	1,9	267	214	755
4АНК315S8У3	110	91,5	0,84	3,5	1,9	311	225	910
4АНК315М8У3	132	92	0,84	3,5	1,9	364	247	980
4АНК355Ѕ8УЗ	160	92,5	0,86	2,7	1,7	353	285	1215
4АНК355М8У3	200	92,5	0,86	2,7	1,7	359	350	1360
Син	хроннах	я част	пота вр	раще	гния 60	00 об/ми	Н	
4АНК280S10У3	45	89	0,78	5,0	1,8	178	162	625
4АНК280М10У3	55	89,5	0,79	4,5	1,8	180	185	675
4АНК315S10У3	75	90	0,8	4,5	1,8	221	217	845
4АНК315М10У3	90	90,5	0,81	4,2	1,8	223	260	920
4АНК355S10У3	110	90,5	0,81	3,8	1,7	242	283	1180
4АНК355М10У3	132	91	0,81	3,6	1,7	257	330	1260
Син	хроннах	я част	пота вр	раще	ения 50	00 об/ми	Н	
4АНК315S12У3	55	89	0,75	5,0	1,8	235	165	845
4АНК315М12У3	75	90	0,75	5,0	1,8	221	207	920
4АНК355S12У3	90	89,5	0,73	4,0	1,7	259	222	1160
4AHK355M12Y3	110	90	0,73	4,0	1,7	265	265	1245

П.3.2 Двигатели серии АИ

Асинхронные двигатели серии АИ (асинхронные Интерэлектро) предназначены для замены АД серий 4А и 4АМ и соответствуют рекомендациям МЭК. Двигатели исполнения АИС имеют привязку

мощностей и установочных размеров по нормам CENELEC для экспортных поставок, а двигатели AИР - привязку по нормам DIN для внутренних поставок.

Двигатели основного исполнения имеют степени защиты IP54 и IP44 (закрытые), а с высотой оси вращения 200 мм и выше - IP23 (защищенные).

Выпускаются следующие модификации двигателей: с фазным ротором (в обозначении стоит буква K); с повышенными скольжением (C) и пусковым моментом (R); однофазные (V, E); многоскоростные; для электроприводов с частотным регулированием скорости; на частоту 60 Γ ц; с фазным ротором (Φ).

По климатическому исполнению различают тропические, влагоморозостойкие, химостойкие, водостойкие АД этой серии.

В табл. П.3.2.1 приводятся параметры двигателей серии АИР основного исполнения.

Таблица П.3.2.1 Технические характеристики двигателей серии АИР

Тип	P_{H} , к B т	$\eta_{_{\scriptscriptstyle{H}}},$ %	$\cos arphi_{\scriptscriptstyle H}$	S _H , %	$\frac{M_n}{M_{_H}}$	$\frac{M_{\text{max}}}{M_{_H}}$	$\frac{M_{\min}}{M_{\scriptscriptstyle H}}$	$\frac{I_n}{I_{_{\scriptscriptstyle H}}}$	Мас-		
Синх	кронна	я час	тота в	раще	ния 3	000 об	/мин				
АИР50А2											
АИР50В2	0,12	63	0,75	11,5	2,2	2,2	1,8	4,5	2,8		
АИР56А2	0,18	68	0,78	9,0	2,2	2,2	1,8	5,0	3,4		
АИР56В2	0,25	69	0,79	9,0	2,2	2,2	1,8	5,0	3,9		
АИР63А2	0,37	72	0,86	9,0	2,2	2,2	1,8	5,0	4,7		
АИР63В2	0,55	75	0,85	9,0	2,2	2,2	1,8	5,0	5,45		
АИР71А2	0,75	78,5	0,83	6,0	2,1	2,2	1,6	6,0	6,5		
АИР71В2	1,1	79	0,83	6,5	2,1	2,2	1,6	6,0	8,8		
АИР80А2	1,5	81	0,85	5,0	2,1	2,2	1,6	7,0	9,8		
АИР80В2	2,2	83	0,87	5,0	2,0	2,2	1,6	7,0	13,2		
AИP90L2	3,0	84,5	0,88	5,0	2,0	2,2	1,6	7,0	16,7		
АИР100S2	4,0	87	0,88	5,0	2,0	2,2	1,6	7,5	21,6		
АИР100L2	5,5	88	0,89	5,0	2,0	2,2	1,6	7,5	27,4		
АИР112М2	7,5	87,5	0,88	3,5	2,0	2,2	1,6	7,5	41		
АИР132М2	11	88	0,9	3,0	1,6	2,2	1,2	7,5	64		
АИР160S2	15	90	0,89	3,0	1,8	2,7	1,7	7,0	100		

	T	1	T		1	1			1	
Тип	P_{H} ,	$\eta_{_{\scriptscriptstyle H}}$,	$\cos \varphi_{_{\scriptscriptstyle H}}$	S_{μ} ,	M_n	$\frac{M_{\text{max}}}{M_{H}}$	M_{\min}	I_n	Mac-	
	кВт	%	7 н	%	$M_{_{\scriptscriptstyle H}}$	H	$M_{_{\scriptscriptstyle H}}$	$I_{_{\scriptscriptstyle H}}$	са, кг	
Синхронная частота вращения 3000 об/мин										
АИР160М2	18,5	90,5	0,9	3,0	2,0	2,7	1,8	7,0	110	
АИР180S2	22	90,5	0,89	2,7	2,0	2,7	1,9	7,0	160	
АИР180М2	30	91,5	0,9	2,5	2,2	3,0	1,9	7,5	180	
АИР200М2	37	91,5	0,87	2,0	1,6	2,8	1,5	7,0	220	
АИР200S2	45	92	0,88	2,0	1,8	2,8	1,5	7,5	240	
АИР225М2	55	92,5	0,91	2,0	1,8	2,6	1,5	7,5	320	
АИР250S2	75	93	0,9	2,0	1,8	3,0	1,6	7,5	425	
АИР250М2	90	93	0,92	2,0	1,8	3,0	1,6	7,5	455	
Синхронная частота вращения 1500 об/мин										
АИР50А4	0.06	53	0,63	11	2,3	2,2	1,8	4,5	2,6	
АИР50В4	0,09	57	0,65	И	2,3	2,2	1,8	4,5	2,9	
АИР56А4	0,12	63	0,66	10	2,3	2,2	1,8	5,0	3,35	
АИР56В4	0,12	64	0,68	10	2,3	2,2	1,8	5,0	3,9	
АИР63А4	0,16	68	0,67	12	2,3	2,2	1,8	5,0	4,7	
АИР63В4	0,23	68	0,7	12	2,3	2,2	1,8	5,0	5,6	
АИР71А4	0,55	70,5	$0,7 \\ 0,7$	9,5	2,3	2,2	1,8	5,0	7,8	
АИР71В4	0,75	73	0,76	10	2,3	2,2	1,6	5,0	8,8	
АИР80А4	1,1	75	0,81	7,0	2,2	2,2	1,6	5,5	9,9	
АИР80В4	1,5	78	0,83	7,0	2,2	2,2	1,6	5,5	12,1	
АИР90L4	2,2	81	0,83	7,0	2,1	2,2	1,6	6,5	17	
АИР100S4	3,0	82	0,83	6,0	2,0	2,2	1,6	7,0	21,6	
АИР100L4	4,0	85	0,84	6,0	2,0	2,2	1,6	7,0	27,3	
АИР112М4	5,5	85,5	0,86	4,5	2,0	2,5	1,6	7,0	41	
АИР132S4	7,5	87,5	0,86	4,0	2,0	2,5	1,6	7,5	58	
АИР132М4	11	87,5	0,87	3,5	2,0	2,7	1,6	7,5	70	
АИР160S4	15	90	0,89	3,0	1,9	2,9	1,8	7,0	100	
АИР160М4	18,5	90,5	0,89	3,0	1,9	2,9	1,8	7,0	110	
АИР180S4	22	90,5	0,87	2,5	1,7	2,4	1,5	7,0	170	
АИР180М4	30	92	0,87	2,0	1,7	2,7	1,5	7,0	190	
АИР200М4	37	92,5	0,89	2,0	1,7	2,7	1,6	7,5	245	
АИР200S4	45	92,5	0,89	2,0	1,7	2,7	1,6	7,5	270	
АИР225М4	55	93	0,89	2,0	1,7	2,6	1,6	7,0	335	
АИР250S4	75	94	0,88	1,5	1,7	2,5	1,4	7,5	450	
11111 23007	13		0,00	1,5	1,/	2,5	1 ,⁻ T	1,5	750	

Продолжение табл. П.3.2.1

Тип	P_{H} , к B т	$\eta_{_{\scriptscriptstyle{H}}},$ %	$\cos arphi_{_{\scriptscriptstyle{H}}}$	S _H , %	$\frac{M_n}{M_{_H}}$	$\frac{M_{\text{max}}}{M_{_H}}$	$\frac{M_{\min}}{M_{\scriptscriptstyle H}}$	$\frac{I_n}{I_{\scriptscriptstyle H}}$	Мас-	
Синхронная частота вращения 1500 об/мин										
АИР250М4	90	94	0,89	1,5	1,5	2,5	1,3	7,5	480	
АИР280S4	110	93,5	0,91	2,2	1,6	2,2	1,0	6,5	594	
АИР280М4	132	94	0,93	2,2	1,6	2,2	1,0	6,5	752	
АИР315S4	160	93,5	0,91	2,0	1,4	2,0	1,0	5,5	896	
АИР315М4	200	94	0,92	2,0	1,4	2,0	0,9	5,5	1000	
АИР355S4	250	94,5	0,92	2,0	1,4	2,0	0,9	7,0	1275	
АИР355М4	315	94,5	0,92	2,0	1,4	2,0	0,9	7,0	1480	
Синхронная частота вращения 1000 об/мин										
АИР63А6	0,19	56	0,62	14	2,0	2,2	1,6	4,0	4,65	
АИР63В6	0,25	59	0,62	14	2,0	2,2	1,6	4,0	5,6	
АИР71А6	0,37	65	0,65	8,5	2,0	2,2	1,6	4,5	7,8	
АИР71В6	1,1	74	0,74	8,0	2,0	2,2	1,6	4,5	13,4	
АИР90L6	1,5	76	0,72	7,5	2,0	2,2	1,6	6,0	16,9	
АИР100Lб	2,2	81	0,74	5,5	2,0	2,2	1,6	6,0	22,8	
АИР112МА6	3,0	81	0,76	5,0	2,0	2,2	1,6	6,0	35	
АИР112МВ6	4,0	82	0,81	5,0	2,0	2,2	1,6	6,0	40,4	
АИР132S6	5,5	85	0,8	4,0	2,0	2,2	1,6	7,0	57	
АИР132М6	7,5	85,5	0,81	4,0	2,0	2,2	1,6	7,0	68	
АИР160S6	11	88	0,83	3,0	2,0	2,7	1,6	6,5	100	
АИР160М6	15	88	0,85	3,0	2,0	2,7	1,6	6,5	120	
АИР180М6	18,5	89,5	0,85	2,0	1,8	2,4	1,6	6,5	180	
АИР200М6	22	90	0,83	2,0	1,6	2,4	1,4	6,5	225	
АИР200L6	30	90	0,85	2,5	1,6	2,4	1,4	6,5	250	
АИР225М6	37	91	0,85	2,0	1,5	2,3	1,4	6,5	305	
АИР250S6	45	92,5	0,85	2,0	1,5	2,3	1,4	6,5	390	
АИР250М6	55	92,5	0,86	2,0	1,5	2,3	1,4	6,5	430	
АИР280S6	75	92,5	0,9	2,2	1,3	2,2	1,0	6,5	637	
АИР280М6	90	93	0,9	2,2	1,4	2,4	1,0	6,5	702	
АИР315S6	110	93	0,92	2,3	1,4	2,3	1,0	6,0	847	
АИР315М6	132	93,5	0,9	2,3	1,4	2,3	1,0	6,5	950	
АИР355S6	160	94	0,9	2,2	1,6	2,0	1,0	7,0	1136	
АИР355М6	200	94,5	0,9	2,2	1,6	2,0	0,9	7,0	1280	

Тип	P_{H} , к B т	$\eta_{_{\scriptscriptstyle H}},$ %	$\cos \varphi_{_{\scriptscriptstyle{H}}}$	$S_{_H}$, %	$\frac{M_n}{M_{_H}}$	$\frac{M_{\text{max}}}{M_{_H}}$	$\frac{M_{\min}}{M_{\scriptscriptstyle H}}$	$\frac{I_n}{I_{_{\scriptscriptstyle H}}}$	Мас-
Синхронная частота вращения 750 об/мин									
АИР71В8	0,25	56	0,65	8,0	1,8	1,9	1,4	4,0	7,8
АИР80А8	0,37	60	0,61	6,5	1,8	1,9	1,4	4,0	13,8
АИР80В8	0,55	64	0,63	6,5	1,8	1,9	1,4	4,0	13,5
AИP90LA8	0,75	70	0,66	7,0	1,6	1,7	1,2	3,5	19,7
AИP90LB8	1,1	72	0,7	7,0	1,6	1,7	1,2	3,5	22,3
АИР100L8	1,5	76	0,73	6,0	1,6	1,7	1,2	5,5	31,3
АИР112МА8	2,2	76,5	0,71	5,5	1,8	2,2	1,4	6,0	36
АИР112МВ8	3,0	79	0,74	5,5	1,8	2,2	1,4	6,0	41
АИР132S8	4,0	83	0,7	4,5	1,8	2,2	1,4	6,0	56
АИР132М8	5,5	83	0,74	5,0	1,8	2,2	1,4	6,0	70
АИР160S8	7,5	87	0,75	3.0	1,6	2,4	1,4	5,5	100
АИР160М8	11	87,5	0,75	3,0	1,6	2,4	1,4	6,0	120
АИР180М8	15	89	0,82	2,5	1,6	2,2	1,5	5,5	180
АИР200М8	18,5	89	0,81	2,5	1,6	2,3	1,4	6,0	225
АИР200L8	22	90	0,81	2,5	1,6	2,3	1,4	6,0	250
АИР225М8	30	90,5	0,81	2,5	1,4	2,3	1,3	6,0	305
АИР250S8	37	92,5	0,78	2,0	1,5	2,3	1,4	6,0	400
АИР250М8	45	92,5	0,79	2,0	1,4	2,2	1,3	6,0	430
АИР280S8	55	92	0,86	3.0	1,3	2,2	1,0	6,0	643
АИР280М8	75	93	0,87	3,0	1,4	2,2	1,0	6,0	735
АИР315S8	90	93	0,85	1,5	1,2	2,2	1,0	6,0	927
АИР315М8	110	93	0,86	1,5	1,1	2,2	0,9	6,0	1001
АИР355S8	132	93,.	0,85	2,0	1,2	2,0	0,9	6,5	1175
АИР355М8	160	93,.	0,85	2,0	1,2	2,0	0,9	6,5	1280

П.3.3 Двигатели серий RA, 5A и 6A

Двигатели серии RA (Российская асинхронная), разработанные в 90-x XXЯрославском середине годов В. на «ELOIN»), электромашиностроительном (ныне OAO заводе предназначены отраслях ДЛЯ использования BO всех хозяйства промышленности, коммунального сельского И

соответствуют российским и международным стандартам (табл. П.3.3.1). В состав этой серии входят двигатели мощностью от 0,37 до 90 кВт с высотами осей вращения от 71 до 280 мм.

Двигатели выпускаются на напряжение 220, 380, 660, 220/380, 380/660 В с частотой 50 (по заказу 60) Гц, степенью защиты IP44, IP54 и монтажным исполнением IM1001, IM2001, IM3001.

Условные обозначения двигателей этой серии соответствуют обозначениям двигателей серии 4А.

Двигатели серии 5A (5AH, 5AHK), выпускаемые Владимирским электромоторным заводом (ОАО ВЭМЗ) и Московским электромеханическим заводом им. Владимира Ильича («Электро-ЗВИ»), взаимозаменяемы с АД серий 4A и AИ и соответствуют российским и международным нормам (табл. П.3.3.2).

В табл. П.3.3.3 приведены параметры АД серии 5А с фазным ротором.

Двигатели серии 6А выпускаются «Электро-ЗВИ» с высотой оси вращения 315 мм, степенью защиты IP54 и IP44 и имеют монтажное исполнение IM1001 и климатическое исполнение УЗ (табл. П.3.3.4).

Таблица П.3.3.1 Технические характеристики двигателей серии RA

Тип	P_{H} ,	Mac-	$n_{_{\scriptscriptstyle H}}$,	$\eta_{_{\scriptscriptstyle H}}$,	$\cos \varphi_{_{\scriptscriptstyle H}}$	$I_{\scriptscriptstyle H}$,	I_n	M_n	M_{max}
ТИП	кВт	са, кг	об/мин	%	$\cos \varphi_{_{\scriptscriptstyle{H}}}$	A	$I_{\scriptscriptstyle \mathcal{H}}$	$M_{_{\scriptscriptstyle H}}$	$M_{_{\scriptscriptstyle H}}$
RA71A2	0,37	5	2800	71	0,81	1,5	5,0	2,3	2,4
RA71B2	0,55	6	2850	74	0,84	1,8	6,5	2,3	2,4
RA71A4	0,25	5	1325	62	0,78	1	3,2	1,7	1,7
RA71B4	0,37	6	1375	66	0,76	1	3,7	2,0	2,0
RA71A6	0,18	6	835	48	0,69	1	2,3	2,5	2,0
RA71B6	0,25	6	860	56	0,72	1	3,0	2,2	2,0
RA80A2	0,75	9	2820	74	0,83	2	5,3	2,5	2,7
RA80B2	1,1	11	2800	77	0,86	2	5,2	2,6	2,8
RA80A4	0,55	8	1400	71	0,80	1	5,0	2,3	2,8
RA80B4	0,75	10	1400	74	0,80	2	5,0	2,5	2,8
RA80A6	0,37	8	910	62	0,72	1	3,3	2,0	2,5
RA80B6	0,55	11	915	63	0,72	1	3,3	2,0	2,5
RA90S2	1,5	13	2835	79	0,87	3	6,5	2,8	3,0

Продолжение табл. П.3.3.1

	P_{H} ,	3.5				7	1	11	M
Тип	' H ,	Mac-	$n_{_{\scriptscriptstyle H}}$,	$\eta_{_{\scriptscriptstyle H}}$,	$\cos \varphi_{_{\scriptscriptstyle{H}}}$	$I_{_{\scriptscriptstyle H}}$,	$\frac{I_n}{I_n}$	$\frac{M_n}{M_n}$	$\frac{M_{\text{max}}}{1.6}$
	кВт	са, кг	об/мин	%	- 11	A	$I_{_{\scriptscriptstyle{\mathcal{H}}}}$	$M_{_{\scriptscriptstyle H}}$	$M_{_{\scriptscriptstyle H}}$
RA90L2	2,2	15	2820	82	0,87	4	6,5	2,9	3,4
RA90S4	1,1	13,5	1420	77	0,80	3	5,5	2,3	2,6
RA90L4	1,5	15,5	1420	78,5	0,80	4	5,5	2,3	2,8
RA90S6	0,75	13	935	70	0,72	2	4,0	2,2	2,5
RA90L6	1,1	15	925	72	0,72	2	4,0	2,2	3,0
RA100L2	3,0	20	2895	83	0,86	6	7,0	2,4	2,6
RA100LA4	2,2	22	1420	79	0,82	5	6,0	2,2	2,6
RA100LB4	3,0	24	1420	81	0,81	7	6,2	2,2	2,6
RA100Lб	1,5	22	925	76	0,76	4	4,5	2,0	2,1
RA112M2	4,0	41	2895	84	0,87	9	6,8	2,2	3,3
RA112M4	4,0	37	1430	85,5	0,84	9	6,5	2,2	2,9
RA112M6	2,2	36	960	78	0,74	5	5,5	1,9	2,5
RA112M8	1,5	36	700	73	0,70	5	4,5	1,7	2,1
RA132SA2	5,5	43	2880	89	0,89	11	6,5	2,4	3,0
RA132SB2	7,5	49	2890	89	0,89	15	7,0	2,5	3,2
RA132S4	5,5	45	1450	85	0,85	11	7,0	2,4	3,0
RA132M4	7,5	52	1455	83	0,83	15	7,0	2,8	3,2
RA132S6	3,0	41	960	79	0,79	7	5,9	2,2	2,6
RA132MA6	4,0	50	960	80	0,80	9	6,0	2,2	2,6
RA132MB6	5,5	56	950	82	0,82	12	6,0	2,2	2,5
RA132S8	2,2	65	720	70	0,70	6	5,0	1,7	2,1
RA132M8	3,0	73	715	70	0,70	8	6,0	1,8	2,4
RA160MA2	11	112	2940	87,5	0,89	22	6,8	2,0	3,3
RA160MB2	15	116	2940	90	0,86	29	7,5	2,0	3,2
RA160L2	18,5	133	2940	90	0,88	35	7,5	2,0	3,2
RA160MA4	11	110	1460	88,5	0,86	22	6,5	1,8	2,8
RA160ML4	15	129	1460	90	0,87	29	7,0	1,9	2,9
RA160M6	7,5	110	970	87	0,80	16	6,0	2,0	2,8
RA160ML6	11	133	970	88,5	0,82	23	6,5	2,2	2,9
RA160MA8	4	107	730	84	0,71	10	4,8	1,8	2,2
RA160MB8	5,5	112	730	84	0,71	14	4,8	1,8	2,2
RA160L8	7,5	131	730	85	0,73	18	5,5	1,8	2,4
RA180M2	22	147	2940	90,5	0,89	42	7,5	2,1	3,5
RA180M4	18,5	149	1460	90,5	0,89	35	7,0	1,9	2,9

Продолжение табл. П.3.3.1

Тип	$P_{\!\scriptscriptstyle H},$ к $\!$ Вт	Мас-	$n_{_{\!\scriptscriptstyle H}},$ об/мин	$\eta_{_{\scriptscriptstyle H}},$ %	$\cos \varphi_{_{\scriptscriptstyle{H}}}$	<i>I</i> _н , А	$\frac{I_n}{I_{_{\scriptscriptstyle H}}}$	$\frac{M_n}{M_H}$	$\frac{M_{\mathrm{max}}}{M_{_{H}}}$
RA180L4	22	157	1460	91	0,88	42	7,0	2,1	2,9
RA180L6	15	155	970	89	0,82	31	7,0	2,3	3,0
RA180L8	11	145	730	87	0,75	26	5,5	1,8	2,4
RA200LA2	30	170	2950	92	0,89	55	7,5	2,4	3,0
RA200LB2	37	230	2950	92	0,89	68	7,5	2,4	3,0
RA200L4	30	200	1475	91	0,86	59	7,7	2,7	3,2
RA200LA6	18,5	182	970	87	0,82	38	5,5	1,8	2,7
RA200LB6	22	202	970	87	0,84	45	6,0	2,0	2,5
RA200L8	15	202	730	88	0,80	34	5,7	2,0	2,5

Таблица П.3.3.2 Технические характеристики двигателей серии 5A

Тип	P_{H} , $\kappa \mathrm{BT}$	$n_{_{\scriptscriptstyle H}}$, об/мин	$\eta_{\scriptscriptstyle H}$, %	$\cos \varphi_{_{\scriptscriptstyle{H}}}$	Масса, кг
5AM315M2	200	2960	95,6	0,93	1110
5AM315S2	160	2960	95	0,92	970
5AM280M2	132	2960	94,7	0,93	770
5AM280S2	110	2960	94,3	0,93	720
5AM250M2	90	2940	93	0,92	505
5AM250S2	75	2940	93	0,91	475
5A225M2	55	2940	93,5	0,91	340
5A200L2	45	2940	93,4	0,90	255
5A200M2	37	2940	93	0,90	235
5A160M2	18,5	2925	91	0,90	138
5A160S2	15	2925	90,5	0,89	126
5ABOMB2	2,2	2850	82,5	0,86	15,5
5A80MA2	1,5	2850	81,5	0,94	14
5AM315M4	200	1480	96	0,89	1150
5AM315S4	160	1480	96	0,89	1110
5AM280M4	132	1480	95,5	0,88	885
5AM280S4	110	1480	95,3	0,87	780

Продолжение табл. П.3.3.2

Тип	P_{H} , KBT	$n_{_{\!\scriptscriptstyle H},\;{\rm O}ar{ m O}/{ m M}{ m H}{ m H}}$	$\eta_{\scriptscriptstyle H}$, %	$\cos \varphi_{_{\scriptscriptstyle H}}$	Масса, кг
5AM250M4	90	1478	94	0,88	515
5AM250S4	75	1478	94	0,87	480
5A225M4	55	1470	93,3	0,85	345
5A200L4	45	1465	92,5	0,85	270
5A200M4	37	1465	92	0,86	245
5A160M4	18,5	1455	90	0,86	140
5A160S4	15	1450	89	0,86	127
5A80MB4	1,5	1410	77	0,82	14,7
5A80MA4	1,1	1410	75	0,80	13
5AM315M6	132	985	95	0,88	1010
5AM315S6	110	985	95	0,88	960
5AM280M6	90	985	94,5	0,86	780
5AM280S6	75	985	94,5	0,86	745
5AM250M6	55	980	92,5	0,85	450
5AM250S6	45	980	92,5	0,83	430
5A225M6	37	980	91	0,83	330
5A200L6	30	978	90	0,84	245
5A160M6	15	970	88,5	0,84	150
5A160S6	11	970	88,5	0,83	124
5A80MB6	1,1	930	73	0,72	16
5A80MA6	0,75	930	71	0,70	14
5AM315M8	110	740	94	0,84	1025
5AM315S8	90	740	94,5	0,84	965
5AM280M8	75	740	93,9	0,84	790
5AM280S8	55	740	93,8	0,85	725
5AM250M8	45	735	92,5	0,76	460
5AM2508	37	735	92	0,75	430
5A225M8	30	735	90,5	0,79	340
5A200L8	22	735	90	0,80	260
5A200M8	18,5	735	89,8	0,79	240
5A160M8	11	725	87,5	0,75	149
5A160S8	7,5	725	87	0,75	123
5A80MB8	0,55	700	61	0,64	5,7
5A80MA8	0,37	675	60	0,62	3,5
5AM315M10	75	590	93,5	0,83	975

Тип	P_{H} , KBT	$n_{_{\scriptscriptstyle H}}$, об/мин	$\eta_{\scriptscriptstyle H}$, %	$\cos \varphi_{_{\scriptscriptstyle{H}}}$	Масса, кг
5AM315S10	55	590	93,5	0,83	925
5AM280M10	45	590	92,5	0,81	760
5AM280S10	37	590	92,4	0,81	710
5AM315M12	55	490	93	0,76	975
5AM315S12	45	490	93	0,76	925
5AH250M2	132	2940	94	0,9	500
5AH250S2	110	2940	93,5	0,88	455
5AH225M2	90	2950	94	0,92	322
5AH200L2	75	2940	93	0,88	270
5AH200M2	55	2940	93	0,88	240
5AH250M4	110	1470	94	0,85	510
5AH250S4	90	1470	94	0,85	455
5AH225M4	90	1475	93	0,85	314
5AH200L4	55	1470	92,5	0,88	280
5AH200M4	45	1470	92,5	0,87	250
5AH250M6	75	985	93	0,82	480
5AH250S6	55	985	95,5	0,82	410
5AH225M6	45	980	91,8	0,84	303
5AH200L6	37	980	91	0,81	255
5AH200M6	30	980	90,5	0,81	230
5AH250M8	55	740	92	0,75	475
5AH250S8	45	740	91	0,75	410
5AH225M8	37	735	90,4	0,80	315
5AH200L8	30	735	90,5	0,82	270
5AH200M8	22	735	90,5	0,82	240

Таблица П.3.3.3

Технические характеристики двигателей серии 5A с фазным ротором

Тип	$P_{H, \text{ KBT}}$	Синхронная частота вращения, об/мин	$\eta_{\scriptscriptstyle H}$, %	$\cos \varphi_{_{\scriptscriptstyle H}}$
5AHK280A4	132	1500	92,5	0,89

Продолжение табл. П.3.3.3

Тип	P_{H} , KBT	Синхронная частота вращения, об/мин	$\eta_{_{\scriptscriptstyle H}}$, %	$\cos \varphi_{_{\scriptscriptstyle H}}$
5AHK280B4	160	1500	92,5	0,89
5AHK280A6	90	1000	91	0,88
5AHK280B6	110	1000	91	0,88
5AHK280A8	75	750	91	0,84
5AHK280B8	90	750	91	0,85
5AHK280A10	45	600	89	0,80
5AHK280B10	55	600	89,5	0,80
5AHK315A4	200	1500	93	0,89
5AHK315B4	250	1500	93	0,90
5AHK315A6	132	1000	92	0,88
5AHK315B6	160	1000	92,5	0,88
5AHK315A8	110	750	91,5	0,85
5AHK315B8	132	750	92,5	0,86
5AHK315A10	75	600	90	0,81
5AHK315B10	90	600	90,5	0,81
5AHK355A4	315	1500	93,5	0,90
5AHK355B4	400	1500	94	0,90
5AHK355A6	200	1000	93	0,90
5AHK355B6	250	1000	93,5	0,89
5AHK355A8	160	750	93,5	0,86
5AHK355B8	200	750	93,5	0,87
5AHK355A10	110	600	90,5	0,79
5AHK355B10	132	600	91	0,81

Таблица П.3.3.4 Технические характеристики двигателей серии 6A

Тип	P_{H} , $\kappa \mathrm{BT}$	$U_{_{\mathit{H}}}$, B	$n_{_{\scriptscriptstyle H}}$, об/мин	$\eta_{\scriptscriptstyle H}$, %	$\cos \varphi_{_{\scriptscriptstyle H}}$
6A315S2	160	380/660	3000	93,5	0,91
6A315M2	200	380/660	3000	93,7	0,91
6A315S4	160	380/660	1500	93,7	0,91
6A315M4	200	380/660	1500	94,2	0,92

Тип	P_{H} , $\kappa \mathrm{BT}$	$U_{_{\scriptscriptstyle H}},\mathbf{B}$	$n_{_{\scriptscriptstyle H}}$, об/мин	$\eta_{\scriptscriptstyle H}$, %	$\cos \varphi_{_{\scriptscriptstyle H}}$
6A315S6	110	220/380; 380/660	1000	93,2	0,90
6A315M6	132	380/660	1000	93,7	0,91
6A315S8	90	220/380; 380/660	750	93,2	0,83
6A315M8	110	220/380; 380/660	750	92,2	0,83

П.3.4 Краново-металлургические двигатели

Краново-металлургические двигатели серии МТК (с короткозамкнутым ротором) и МТ (с фазным ротором) предназначены для работы в повторно-кратковременном режиме S3 и характеризуются повышенными пусковыми и критическими моментами и механической прочностью. Они могут иметь класс изоляции E, B, H и F и выпускаются на номинальные мощности от 1,4 до 200 кВт (при ПВ = 25 %), напряжения 220/380 и 500 В и синхронные частоты вращения 600, 750 и 1000 об/мин. В табл. П.3.4.1 приведены параметры АД этой серии с короткозамкнутым ротором, а в табл. П.3.4.2 - с фазным ротором. Примеры расшифровки обозначения двигателей:

МТКН412-8: МТ - серия; К - короткозамкнутый ротор; Н -класс изоляции; 412 - условный габарит двигателя; 8 - число полюсов двигателя;

MTF211-6: МТ - серия; F - класс изоляции; 211 - габарит; 6 - число полюсов.

Таблица П.3.4.1

Технические характеристики краново-металлургических двигателей MTKF и MTKH

Тип	$P_{H, \Pi \text{ри}}$ ПВ= =40 %, кВт	$n_{_{\!\scriptscriptstyle H}},$ об/мин	$\cos \varphi_{_{\scriptscriptstyle H}}$	$\eta_{_{\scriptscriptstyle H}},$ %	<i>M</i> _{max} , H•M		-	Мас-
MTKF011-6	1,4	875	0,66	61,5	42	42	15	47

171

Продолжение табл. П.3.4.1

	$P_{\!\scriptscriptstyle H}$, при						$I_{_{\scriptscriptstyle H}}$,	
Т	ПВ=	$n_{_{\scriptscriptstyle H}}$,	200 (2	$\eta_{_{\scriptscriptstyle H}}$,	$M_{\rm max}$,	M_n ,	при	Mac-
Тип	=40 %,	об/мин	$\cos \varphi_{_{\scriptscriptstyle{H}}}$	%	Н•м	Н•м	380B,	са, кг
	– 4 0 %, кВт	OO/ WIIII		70		11 1/1	A	
MTKF012-6	2,2	880	0,69	67	67	67	22	53
MTKF111-6	3,5	885	0,79	72	105	104	35	70
MTKF112-6	5,0	895	0,74	74	175	175	53	80
MTKF211-6	7,5	880	0,77	75,5	220	210	78	110
MTKF311-6	11	910	0,76	77,5	390	380	130	155
MTKF312-6	15	930	0,78	81	600	590	205	195
MTKF411-6	22	935	0,79	82,5	780	720	275	255
MTKF412-6	30	935	0,78	83,5	1000	950	380	315
MTKF311-8	7,5	690	0,71	73,5	330	320	95	155
MTKF312-8	11	700	0,74	78	510	470	150	195
MTKF411-8	15	695	0,71	80	670	650	185	255
MTK412-8	22	700	0,69	80,5	1000	950	295	315
MTKH111-6	3,0	910	0,7	68	99	98	32	70
MTKH112-6	4,5	900	0,75	71,5	158	157	50	80
MTKH211-6	7,0	895	0,7	73	230	220	88	110
MTKH311-6	11	910	0,76	77,5	390	380	130	155
MTKH312-6	15	930	0,78	81	600	590	205	195
MTKH411-6	22	935	0,79	82,5	780	720	275	255
MTKH412-6	30	935	0,78	83,5	1000	950	380	315
MTKH311-6	7,5	690	0,71	73,5	330	320	95	155
MTKH312-8	11	700	0,74	78	510	470	150	195
MTKH411-8	15	695	0,71	80	670	650	185	255
MTKH412-8	22	700	0,69	80,5	1000	950	295	315
MTKH511-8	28	695	0,77	83	1150	1150	336	440
MTKH512-8	37	695	0,78	83	1500	1420	460	540

Технические характеристики краново-металлургических двигателей MTF и MTH

MTF011-6 1,4 885 0,65 61,5 40 0,0213 51 MTF012-6 2,2 890 0,68 64 57 0,0288 58 MTF111-6 3,5 895 0,73 70 87 0,0488 76 MTF112-6 5,0 930 0,7 75 140 0,0675 88 MTF211-6 7,5 930 0,7 77 195 0,115 120 MTF311-6 11 945 0,69 79 320 0,225 170 MTF312-6 15 955 0,73 82 480 0,313 210 MTF411-6 22 965 0,73 83,5 650 0,5 280 MTF311-8 7,5 695 0,68 73 270 0,275 170 MTF311-8 7,5 695 0,68 73 270 0,275 170 MTF311-8 11 705 0,71	Тип	<i>P_H</i> , при ПВ= =40%, кВт	$n_{_{\!\scriptscriptstyle H}},$ об/мин	$\cos \varphi_{_{\scriptscriptstyle H}}$	$\eta_{_{\scriptscriptstyle{H}}},$ %	$M_{\rm max}$, $H^{ullet}M$	<i>J</i> , кг•м²	Мас-
MTF012-6 2,2 890 0,68 64 57 0,0288 58 MTF111-6 3,5 895 0,73 70 87 0,0488 76 MTF112-6 5,0 930 0,7 75 140 0,0675 88 MTF211-6 7,5 930 0,7 77 195 0,115 120 MTF311-6 11 945 0,69 79 320 0,225 170 MTF312-6 15 955 0,73 82 480 0,313 210 MTF411-6 22 965 0,73 83,5 650 0,5 280 MTF412-6 30 970 0,71 85,5 950 0,675 345 MTF311-8 7,5 695 0,68 73 270 0,275 170 MTF312-8 11 705 0,71 77 430 0,388 210 MTF412-8 22 720 0,63 8	MTF011 6	,		0.65			0.0213	51
MTF111-6 3,5 895 0,73 70 87 0,0488 76 MTF112-6 5,0 930 0,7 75 140 0,0675 88 MTF211-6 7,5 930 0,7 77 195 0,115 120 MTF311-6 11 945 0,69 79 320 0,225 170 MTF312-6 15 955 0,73 82 480 0,313 210 MTF411-6 22 965 0,73 83,5 650 0,5 280 MTF412-6 30 970 0,71 85,5 950 0,675 345 MTF311-8 7,5 695 0,68 73 270 0,275 170 MTF312-8 11 705 0,71 77 430 0,388 210 MTF412-8 15 710 0,67 81 580 0,538 280 MTH111-6 3,0 895 0,67		•		· ·	-		-	
MTF112-6 5,0 930 0,7 75 140 0,0675 88 MTF211-6 7,5 930 0,7 77 195 0,115 120 MTF311-6 11 945 0,69 79 320 0,225 170 MTF312-6 15 955 0,73 82 480 0,313 210 MTF411-6 22 965 0,73 83,5 650 0,5 280 MTF412-6 30 970 0,71 85,5 950 0,675 345 MTF311-8 7,5 695 0,68 73 270 0,275 170 MTF312-8 11 705 0,71 77 430 0,388 210 MTF411-8 15 710 0,67 81 580 0,538 280 MTF411-6 3,0 895 0,67 65 85 0,0488 76 MTH311-6 11 940 0,69 7				· ·			,	
MTF211-6 7,5 930 0,7 77 195 0,115 120 MTF311-6 11 945 0,69 79 320 0,225 170 MTF312-6 15 955 0,73 82 480 0,313 210 MTF411-6 22 965 0,73 83,5 650 0,5 280 MTF412-6 30 970 0,71 85,5 950 0,675 345 MTF311-8 7,5 695 0,68 73 270 0,275 170 MTF312-8 11 705 0,71 77 430 0,388 210 MTF411-8 15 710 0,67 81 580 0,538 280 MTF411-8 15 710 0,67 81 580 0,538 280 MTH11-6 3,0 895 0,67 65 85 0,0488 76 MTH311-6 4,5 910 0,71 6		•		· ·			· ·	
MTF311-6 11 945 0,69 79 320 0,225 170 MTF312-6 15 955 0,73 82 480 0,313 210 MTF411-6 22 965 0,73 83,5 650 0,5 280 MTF412-6 30 970 0,71 85,5 950 0,675 345 MTF311-8 7,5 695 0,68 73 270 0,275 170 MTF312-8 11 705 0,71 77 430 0,388 210 MTF411-8 15 710 0,67 81 580 0,538 280 MTF412-8 22 720 0,63 82 900 0,75 345 MTH11-6 3,0 895 0,67 65 85 0,0488 76 MTH311-6 4,5 910 0,71 69 120 0,0675 88 MTH311-6 11 940 0,69 78				ĺ			,	
MTF312-6 15 955 0,73 82 480 0,313 210 MTF411-6 22 965 0,73 83,5 650 0,5 280 MTF412-6 30 970 0,71 85,5 950 0,675 345 MTF311-8 7,5 695 0,68 73 270 0,275 170 MTF312-8 11 705 0,71 77 430 0,388 210 MTF411-8 15 710 0,67 81 580 0,538 280 MTF412-8 22 720 0,63 82 900 0,75 345 MTH111-6 3,0 895 0,67 65 85 0,0488 76 MTH311-6 4,5 910 0,71 69 120 0,0675 88 MTH312-6 15 950 0,64 73 200 0,115 120 MTH412-6 30 965 0,71 8		•		ĺ			*	
MTF411-6 22 965 0,73 83,5 650 0,5 280 MTF412-6 30 970 0,71 85,5 950 0,675 345 MTF311-8 7,5 695 0,68 73 270 0,275 170 MTF312-8 11 705 0,71 77 430 0,388 210 MTF411-8 15 710 0,67 81 580 0,538 280 MTF412-8 22 720 0,63 82 900 0,75 345 MTH111-6 3,0 895 0,67 65 85 0,0488 76 MTH311-6 4,5 910 0,71 69 120 0,0675 88 MTH311-6 11 940 0,69 78 320 0,225 170 MTH312-6 15 950 0,73 81 480 0,313 210 MTH412-6 30 965 0,71 8				· ·			*	
MTF412-6 30 970 0,71 85,5 950 0,675 345 MTF311-8 7,5 695 0,68 73 270 0,275 170 MTF312-8 11 705 0,71 77 430 0,388 210 MTF411-8 15 710 0,67 81 580 0,538 280 MTF412-8 22 720 0,63 82 900 0,75 345 MTH111-6 3,0 895 0,67 65 85 0,0488 76 MTH21-6 4,5 910 0,71 69 120 0,0675 88 MTH311-6 11 940 0,69 78 320 0,225 170 MTH312-6 15 950 0,73 81 480 0,313 210 MTH412-6 30 965 0,71 84,5 950 0,675 345 MTH611-6 75 950 0,85				· ·			,	
MTF311-8 7,5 695 0,68 73 270 0,275 170 MTF312-8 11 705 0,71 77 430 0,388 210 MTF411-8 15 710 0,67 81 580 0,538 280 MTF412-8 22 720 0,63 82 900 0,75 345 MTH111-6 3,0 895 0,67 65 85 0,0488 76 MTH 112-6 4,5 910 0,71 69 120 0,0675 88 MTH211-6 7,0 920 0,64 73 200 0,115 120 MTH311-6 11 940 0,69 78 320 0,225 170 MTH411-6 22 960 0,73 82,5 650 0,5 280 MTH412-6 30 965 0,71 84,5 950 0,675 345 MTH611-6 75 950 0,85 <td< td=""><td></td><td></td><td></td><td>· ·</td><td></td><td></td><td>,</td><td></td></td<>				· ·			,	
MTF312-8 11 705 0,71 77 430 0,388 210 MTF411-8 15 710 0,67 81 580 0,538 280 MTF412-8 22 720 0,63 82 900 0,75 345 MTH111-6 3,0 895 0,67 65 85 0,0488 76 MTH 112-6 4,5 910 0,71 69 120 0,0675 88 MTH211-6 7,0 920 0,64 73 200 0,115 120 MTH312-6 15 950 0,73 81 480 0,313 210 MTH411-6 22 960 0,73 82,5 650 0,5 280 MTH412-6 30 965 0,71 84,5 950 0,675 345 MTH611-6 75 950 0,85 87 2660 3,275 - MTH613-6 118 965 0,84				· ·				
MTF411-8 15 710 0,67 81 580 0,538 280 MTF412-8 22 720 0,63 82 900 0,75 345 MTH111-6 3,0 895 0,67 65 85 0,0488 76 MTH 112-6 4,5 910 0,71 69 120 0,0675 88 MTH211-6 7,0 920 0,64 73 200 0,115 120 MTH312-6 11 940 0,69 78 320 0,225 170 MTH411-6 22 960 0,73 81 480 0,313 210 MTH412-6 30 965 0,71 84,5 950 0,675 345 MTH512-6 55 960 0,79 88 1660 1,018 - MTH611-6 75 950 0,85 87 2660 3,275 - MTH613-6 118 965 0,84 9		•		· ·			*	
MTF412-8 22 720 0,63 82 900 0,75 345 MTH111-6 3,0 895 0,67 65 85 0,0488 76 MTH 112-6 4,5 910 0,71 69 120 0,0675 88 MTH211-6 7,0 920 0,64 73 200 0,115 120 MTH311-6 11 940 0,69 78 320 0,225 170 MTH312-6 15 950 0,73 81 480 0,313 210 MTH412-6 30 965 0,71 84,5 950 0,675 345 MTH512-6 55 960 0,79 88 1660 1,018 - MTH611-6 75 950 0,85 87 2660 3,275 - MTH613-6 118 965 0,84 90 4750 5,1 - MTH311-8 7,5 690 0,68 71,				· ·			,	
MTH111-6 3,0 895 0,67 65 85 0,0488 76 MTH 112-6 4,5 910 0,71 69 120 0,0675 88 MTH211-6 7,0 920 0,64 73 200 0,115 120 MTH311-6 11 940 0,69 78 320 0,225 170 MTH312-6 15 950 0,73 81 480 0,313 210 MTH411-6 22 960 0,73 82,5 650 0,5 280 MTH412-6 30 965 0,71 84,5 950 0,675 345 MTH512-6 55 960 0,79 88 1660 1,018 - MTH611-6 75 950 0,85 87 2660 3,275 - MTH613-6 118 965 0,84 90 4750 5,1 - MTH311-8 7,5 690 0,68 71				· ·			·	
MTH 112-6 4,5 910 0,71 69 120 0,0675 88 MTH211-6 7,0 920 0,64 73 200 0,115 120 MTH311-6 11 940 0,69 78 320 0,225 170 MTH312-6 15 950 0,73 81 480 0,313 210 MTH411-6 22 960 0,73 82,5 650 0,5 280 MTH512-6 30 965 0,71 84,5 950 0,675 345 MTH611-6 75 950 0,85 87 2660 3,275 - MTH612-6 95 960 0,85 88 3650 4,125 - MTH311-8 7,5 690 0,68 71,5 270 0,275 170 MTH312-8 11 700 0,69 78 430 0,313 210 MTH412-8 15 705 0,67 <t< td=""><td></td><td></td><td></td><td>· ·</td><td></td><td></td><td>,</td><td></td></t<>				· ·			,	
MTH211-6 7,0 920 0,64 73 200 0,115 120 MTH311-6 11 940 0,69 78 320 0,225 170 MTH312-6 15 950 0,73 81 480 0,313 210 MTH411-6 22 960 0,73 82,5 650 0,5 280 MTH412-6 30 965 0,71 84,5 950 0,675 345 MTH512-6 55 960 0,79 88 1660 1,018 - MTH611-6 75 950 0,85 87 2660 3,275 - MTH612-6 95 960 0,85 88 3650 4,125 - MTH311-8 7,5 690 0,68 71,5 270 0,275 170 MTH312-8 11 700 0,69 78 430 0,313 210 MTH41-8 15 705 0,67 79		•		· ·			,	
MTH311-6 11 940 0,69 78 320 0,225 170 MTH312-6 15 950 0,73 81 480 0,313 210 MTH411-6 22 960 0,73 82,5 650 0,5 280 MTH412-6 30 965 0,71 84,5 950 0,675 345 MTH512-6 55 960 0,79 88 1660 1,018 - MTH611-6 75 950 0,85 87 2660 3,275 - MTH613-6 95 960 0,85 88 3650 4,125 - MTH311-8 7,5 690 0,68 71,5 270 0,275 170 MTH411-8 15 705 0,67 79 580 0,538 280 MTH412-8 22 715 0,63 80,5 900 0,75 345 MTH511-8 28 705 0,72 8		•		· ·			· ·	
MTH312-6 15 950 0,73 81 480 0,313 210 MTH411-6 22 960 0,73 82,5 650 0,5 280 MTH412-6 30 965 0,71 84,5 950 0,675 345 MTH512-6 55 960 0,79 88 1660 1,018 - MTH611-6 75 950 0,85 87 2660 3,275 - MTH613-6 95 960 0,85 88 3650 4,125 - MTH311-8 7,5 690 0,68 71,5 270 0,275 170 MTH411-8 15 705 0,67 79 580 0,538 280 MTH412-8 22 715 0,63 80,5 900 0,75 345 MTH511-8 28 705 0,72 83 1020 1,075 470		•		· ·			· ·	
MTH411-6 22 960 0,73 82,5 650 0,5 280 MTH412-6 30 965 0,71 84,5 950 0,675 345 MTH512-6 55 960 0,79 88 1660 1,018 - MTH611-6 75 950 0,85 87 2660 3,275 - MTH612-6 95 960 0,85 88 3650 4,125 - MTH613-6 118 965 0,84 90 4750 5,1 - MTH311-8 7,5 690 0,68 71,5 270 0,275 170 MTH411-8 15 705 0,67 79 580 0,538 280 MTH412-8 22 715 0,63 80,5 900 0,75 345 MTH511-8 28 705 0,72 83 1020 1,075 470				· ·			,	
MTH412-6 30 965 0,71 84,5 950 0,675 345 MTH512-6 55 960 0,79 88 1660 1,018 - MTH611-6 75 950 0,85 87 2660 3,275 - MTH613-6 95 960 0,85 88 3650 4,125 - MTH311-8 7,5 690 0,68 71,5 270 0,275 170 MTH312-8 11 700 0,69 78 430 0,313 210 MTH411-8 15 705 0,67 79 580 0,538 280 MTH412-8 22 715 0,63 80,5 900 0,75 345 MTH511-8 28 705 0,72 83 1020 1,075 470				•			,	
MTH512-6 55 960 0,79 88 1660 1,018 - MTH611-6 75 950 0,85 87 2660 3,275 - MTH612-6 95 960 0,85 88 3650 4,125 - MTH613-6 118 965 0,84 90 4750 5,1 - MTH311-8 7,5 690 0,68 71,5 270 0,275 170 MTH312-8 11 700 0,69 78 430 0,313 210 MTH411-8 15 705 0,67 79 580 0,538 280 MTH412-8 22 715 0,63 80,5 900 0,75 345 MTH511-8 28 705 0,72 83 1020 1,075 470				1			•	
MTH611-6 75 950 0,85 87 2660 3,275 - MTH612-6 95 960 0,85 88 3650 4,125 - MTH613-6 118 965 0,84 90 4750 5,1 - MTH311-8 7,5 690 0,68 71,5 270 0,275 170 MTH312-8 11 700 0,69 78 430 0,313 210 MTH411-8 15 705 0,67 79 580 0,538 280 MTH412-8 22 715 0,63 80,5 900 0,75 345 MTH511-8 28 705 0,72 83 1020 1,075 470				1			*	J -1 J
MTH612-6 95 960 0,85 88 3650 4,125 - MTH613-6 118 965 0,84 90 4750 5,1 - MTH311-8 7,5 690 0,68 71,5 270 0,275 170 MTH312-8 11 700 0,69 78 430 0,313 210 MTH411-8 15 705 0,67 79 580 0,538 280 MTH412-8 22 715 0,63 80,5 900 0,75 345 MTH511-8 28 705 0,72 83 1020 1,075 470				· ·				_
MTH613-6 118 965 0,84 90 4750 5,1 - MTH311-8 7,5 690 0,68 71,5 270 0,275 170 MTH312-8 11 700 0,69 78 430 0,313 210 MTH411-8 15 705 0,67 79 580 0,538 280 MTH412-8 22 715 0,63 80,5 900 0,75 345 MTH511-8 28 705 0,72 83 1020 1,075 470				· ·				_
MTH311-8 7,5 690 0,68 71,5 270 0,275 170 MTH312-8 11 700 0,69 78 430 0,313 210 MTH411-8 15 705 0,67 79 580 0,538 280 MTH412-8 22 715 0,63 80,5 900 0,75 345 MTH511-8 28 705 0,72 83 1020 1,075 470				· ·				_
MTH312-8 11 700 0,69 78 430 0,313 210 MTH411-8 15 705 0,67 79 580 0,538 280 MTH412-8 22 715 0,63 80,5 900 0,75 345 MTH511-8 28 705 0,72 83 1020 1,075 470				· ·			•	170
MTH411-8 15 705 0,67 79 580 0,538 280 MTH412-8 22 715 0,63 80,5 900 0,75 345 MTH511-8 28 705 0,72 83 1020 1,075 470				· ·	-		*	
MTH412-8 22 715 0,63 80,5 900 0,75 345 MTH511-8 28 705 0,72 83 1020 1,075 470				· ·			*	
MTH511-8 28 705 0,72 83 1020 1,075 470				•			*	
				'	,		,	
1V1111314 ⁻ 0 31 103 0,14 03 1400 1,443 310				•			*	
MTH611-10 45 570 0,72 84 2360 4,25 900				· ·			*	

173 Продолжение табл. П.3.4.2

Тип	<i>P_H</i> , при ПВ= =40%, кВт	$n_{_{\!\scriptscriptstyle H}},$ об/мин	\mathbf{v}_{H}	$\eta_{_{\scriptscriptstyle{H}}},$ %	<i>M</i> _{max} , H•M	<i>J</i> , кг•м²	Мас-
MTH612-10	60	565	0,78	85	3200	5,25	1070
MTH613-10	75	575	0,72	88	4200	6,25	1240
MTH711-10	100	584	0,69	89,5	4650	10,25	1550
MTH712-10	125	585	0,7	90,3	5800	12,75	1700

Приложение 4

П.4 Электрические двигатели постоянного тока

Табл. 4.1 содержатся основные сведения о машинах постоянного тока.

Таблица 4.1 Технические характеристики машин постоянного тока

Серия	$P_{H, \text{ KBT}}$	$n_{_{\scriptscriptstyle H}}$, об/мин	$U_{\scriptscriptstyle H}$, B	Краткая характеристика
4Π	0,18250	7503000	110, 220, 440	Общего назначения, для замены двигателей серии 2Π
2Π	0,37200	6003000	110, 220, 340, 440	Общего назначения, для замены двигателей П 1-11-го габаритов
П (1-11-го габаритов)	0,2200	6003000	110, 20, 440	Общепромышленного и специализированного назначения
П (12-22-го габаритов)	100 6300	1001500	220 1000	То же
Д	2,5185 при ПВ= =100%	4101460	220, 440	Повышенные пусковые моменты и широкий диапазон регулирования скорости, для привода крановых, металлургических и других механизмов
ПБВ	0,755,5	1000	60 110	Закрытые, с возбуждением от постоянных магнитов, для привода станков с ЧПУ
МИ	0,1-0,37	1000, 2000, 3000	60, 110	Закрытые (водозащищенные), для работы в системах автоматики

ПГ, ПГТ ПС, ПСТ ПБС, ПБСТ	0,99 0,121,1 0,411,3	3000 10003000 10003000	60 220; 110, 220; 110, 220, 340, 440	Закрытые, с естественным охлаждением (ПГ.ПГТ), защищенные с принудительной вентиляцией (остальные), реверсивные, общего назначения я
ДПМ	2,860 при ПВ = =25%	6751700	110, 220	Водозащищенные, с естественным охлаждением и широким диапазоном регулирования скорости

Примечание. Через косую линию обозначены пределы регулирования скорости и напряжения.

В табл. П.4.2 приведены параметры двигателей серии 2ПН, в табл. П.4.3 - серии 2ПФ, в табл. П.4.4 - 4ПО, в табл. П.4.5 - 4ПБ, а в табл. П.4.6 - 4ПФ. Двигатели серии 2П с высотами осей вращения (ВОВ) 90 ... 315 мм могут иметь степень защиты IP22 (защищенные, буква Н в обозначении), с ВОВ 132... 315 мм - IP22 (защищенные, с независимой вентиляцией от постороннего вентилятора, буква Ф в обозначении), с ВОВ 90...200 мм - IP44 (закрытые, с естественным охлаждением, буква Б в обозначении), с ВОВ 132... 200 мм - 1P44 (закрытые, с наружным обдувом от постороннего вентилятора, буква О в обозначении).

Двигатели серий 4ПО и 4ПБ с ВОВ 80 160 мм имеют степень защиты IP44, а серии 4ПФ - IP23. Двигатели серий 2П и 4П могут снабжаться датчиком скорости (тахогенератором), на что указывает буква Γ в обозначении.

Двигатели краново-металлургической серии Д предназначены для работы в условиях повышенных температуры, влажности, запыленности и вибраций в составе электроприводов, работающих в повторно-кратковременном режиме с частыми пусками, реверсами и торможениями. В связи с этим они имеют повышенную механическую прочность и пониженный момент инерции якоря, что

повышает их быстродействие и снижает потери электроэнергии в двигателе в переходных процессах. Двигатели допускают тройное превышение скорости вращения по сравнению с номинальной, имеют изоляцию класса Н и выпускаются на напряжения 220 и 440 В. В табл. П.4.7 содержатся параметры двигателей этой серии на напряжение 220 В.

Таблица 9.2 Технические характеристики двигателей серии 2ПН

ВОВ, мм	$P_{H, \text{ KBT}}$	$U_{\scriptscriptstyle{H}},\mathbf{B}$	$n_{_{\scriptscriptstyle H}}$,	n_{max} ,	$\eta_{_{\scriptscriptstyle{H}}}$,	$R_{\scriptscriptstyle g}$, O _M	$R_{\partial.n.}$
		,	об/мин	об/мин	%		Ом
	0,17	110	750	3000	47,5	5,84	4,40
		220	750	1500	48,5	27,2	16,2
	0,25	110	1060	4000	56	3,99	2,55
		220	1120	2000	57	15,47	11,2
90M	0,37	110	1500	3000	61,5	2,52	1,47
901 V 1		220	1500	2250	61,5	10,61	6,66
	0,71	110	2360	4000	69,5	1	0,54
		220	2360	3540	70	3,99	2,55
	1	110	3000	4000	71,5	0,6	0,35
		220	3000	4000	72,5	2,52	1,47
	0,37	110	750	3000	60	2,69	1,62
		220	750	1500	59,5	11,78	6,7
	0,5	110	1000	4000	65	1,79	0,93
		220	1000	2000	66	7,05	4,62
100M	0,75	110	1500	4000	71	0,805	0,57
TOON		220	1500	4300	71,5	3,4	2,05
	1,2	110	2120	4000	75	0,436	0,355
		220	2200	4000	76,5	1,792	0,93
	2	110	3000	4000	78,5	0,201	0,135
		220	3000	4000	79	0,805	0,57
112M	0,6	110	800	3000	59	1,29	1,12
		220	800	2500	60,5	5,07	4,5
	0,85	110	1060	4000	63	0,788	0,682
		220	950	3500	64	3,85	3,08
	1,5	110	1500	4000	70	0,42	0,355

Продолжение табл. П.4.2

ВОВ, мм	P_{H} , KBT	$U_{_{\mathit{H}}}$, B	<i>п_н</i> , об/мин	$n_{ m max}$, об/мин	$\eta_{_{\scriptscriptstyle H}},$ %	R_{s} , OM	$R_{\partial.n.}$, Om
		220	1500	4000	70	1,77	1,55
	2,5	110	2120	4000	76	0,196	1,134
112M	2,5	220	2200	4000	76	0,788	0,682
112111	3,6	110	3150	4000	78,5	0,084	0,089
		220	3000	4000	79	0,42	0,356
	1,6	110	750	3000	68	0,472	0,308
	_, -, -	220	750	2500	68,5	1,88	1,39
	2,5	110	1000	4000	72	0,271	0,204
	,	220	1000	3000	73,5	1,08	0,763
		440	1000	25000	73	4,54	3,26
	4	110	1500	4000	77,5	0,14	0,094
132M		220	1500	4000	79	0,564	0,336
		440	1500	3750	79	2,28	1,44
	7	110	2200	4000	81	0,067	0,049
		220	2240	4000	83	0,226	0,166
		440	2240	4000	83	0,906	0,692
	10,5	220	3000	4000	84	0,14	0,094
		440	3000	4000	85	0,564	0,366
	3	110	750	3000	75,5	0,138	0,135
		220	750	2500	76,5	0,732	0,485
		440	750	1850	76	3,15	2,21
	4,5	110	950	4000	78,5	0,11	0,078
		220	1000	3000	79,5	0,411	0,304
		440	950	2500	79	1,78	1,44
160M	7,5	110	1600	4000	83	0,037	0,024
		220	1500	4000	83	0,183	0,135
		440	1500	3750	84	0,732	0,485
	13	220	2120	4000	85,5	0,081	0,056
		440	2360	4000	86,5	0,279	0,175
	18	220	3150	4000	87	0,037	0,024
		440	3150	4000	87,5	0,145	0,101
	5,6	110	750	3000	78,5	0,084	0,056
180M		220	750	3500	79	0,338	0,221
		440	750	1850	79,5	1,5	0,825

Продолжение табл. П.4.2

ВОВ, мм	P_{H} , $\kappa \mathrm{BT}$	II p	$n_{_{\scriptscriptstyle H}}$,	n_{\max} ,	$\eta_{_{\scriptscriptstyle H}},$	R_{g} , OM	$R_{\partial.n.}$,
DOD, MM	, KD1	$U_{\scriptscriptstyle H}$, B	об/мин	об/мин	%	Λ_g , OM	Ом
	8	110	1000	3500	81,5	0,058	0,037
		220	1060	3000	83	0,181	0,122
		440	1000	2500	82	0,902	0,54
	15	110	1500	3500	85,5	-	-
1001/		220	1500	4000	85,5	0,084	0,056
180M		440	1500	3500	86	0,338	0,221
	26	220	2240	3500	88	0,038	0,025
		440	2240	3500	89	0,15	0,092
	37	220	3000	3500	89,5	0,022	0,015
		440	3150	3500	79,5	0,084	0,056
	8,5	110	800	3000	81	0,047	0,029
		220	800	2500	82	0,188	0,116
		440	800	1850	82	0,796	0,506
	13	110	1120	3500	84	0,026	0,016
		220	1120	3000	85	0,106	0,061
200M		440	1000	2500	84,5	0,485	0,303
	22	220	1500	3500	87,5	0,047	0,029
		440	1500	3500	87,5	0,246	0,13
	36	220	2200	3500	88,5	0,026	0,016
		440	2200	3500	-	0,106	0,061
	60	440	3150	3500	90,5	0,047	0,029
	7,5	220	1500	1800	77	0,350	0,1010
	11	220	600	2100	79,5	0,202	0,0688
22514	15	220	750	2500	80,5	0,146	0,0637
225M	22	220	1000	2500	82	0,086	0,0429
	37	220	1500	3000	86,5	0,0366	0,0159
		440	1500	1850	86,5	0,168	0,0678
250M	15	220	530	1500	80	0,142	0,078
	18	220	630	2100	80,5	0,11	0,054
		440	600	2800	80,5	0,57	0,25
	22	220	750	2000	81	0,074	0,039
		440	850	2400	81	0,235	0,096
	37	220	1060	2500	85	0,035	0,019
		440	1060	2500	85	0,152	0,078

Продолжение табл. П.4.2

ВОВ, мм	$P_{H, \text{ KBT}}$	$U_{\scriptscriptstyle H}$, B	$n_{_{\scriptscriptstyle H}}$	n_{max} ,	$\eta_{_{\scriptscriptstyle{H}}}$,	$R_{_{\mathcal{S}}}$, OM	$R_{\scriptscriptstyle \partial.n.}, \ \mathrm{Om}$
			об/мин	об/мин	%		
	50	440	1500	1800	87	0,11	0,054
250M	55	220	1500	2800	87	0,0185	0,0098
		440	1700	2800	87	0,059	0,026
	22	220	530	1250	83	0,062	0,033
	30	220	600	1500	84,5	0,046	0,022
		440	600	1500	84,5	0,185	0,0817
	45	220	750	2000	86	0,034	0,015
20014		440	750	1200	86,5	0,137	0,0618
280M	75	220	1000	2250	88,5	0,016	0,0083
		440	1180	2400	88,5	0,046	0,0022
	90	440	1500	1500	89	-	-
	110	220	1500	2600	89,5	0,0075	0,0038
		440	1500	2250	89,5	0,034	0,0154
	45	220	600	1500	85,5	0,03	0,014
		440	600	1500	85,5	0,12	0,058
	55	440	750	1800	87	0,068	0,028
315M	100	440	1000	2250	88	0,04	0,024
	110	220	1000	2250	89	0,0082	0,0045
	160	220	1500	2400	90	0,004	0,0025
		440	1900	2400.	90	0,0116	0,0071

Примечания: 1. Данные в таблице приведены для двигателей с длиной сердечника якоря M, климатическим исполнением УХ, категорией размещения 4.

2. Обозначения: n_{\max} , об/мин - максимальная скорость двигателя; $R_{\scriptscriptstyle A}$, $R_{\scriptscriptstyle \partial.n.}$ - активные сопротивления соответственно обмоток якоря и дополнительных полюсов.

Таблица П.4.3 Технические характеристики двигателей серии 2ПФ

ВОВ, мм	$P_{H, \text{ KBT}}$	$U_{\scriptscriptstyle H}$, B	$n_{_{\scriptscriptstyle H}}$,	n_{max} ,	$\eta_{_{\scriptscriptstyle H}},$	$R_{_{\mathcal{B}}}$, OM	$R_{\partial.n.}$,
BOB, MIM	7	° H , D	об/мин	об/мин	%	\mathbf{r}_{g} , OM	Ом
	2,8	110	750	3750	66,5	0,269	0,22
		220	750	2500	67	1,08	0,915
		440	750	1850	69	4,05	2,92
	4,2	110	950	4000	72	0,167	0,124
		220	1000	3000	73	0,67	0,445
		440	1000	2500	73	2,8	1,96
132L	5,5	110	1500	4200	79	0,08	0,066
132L		220	1600	4200	80,5	0,269	0,22
		440	1600	3750	80,5	1,08	0,915
	7,5	110	2200	4000	83	0,055	0,039
		220	2120	4000	83,5	0,167	0,124
		440	2200	4000	86	0,67	0,445
	11	220	3000	4000	85,5	0,08	0,066
		440	3150	4000	86,5	0,322	0,27
	4,2	110	800	3750	74,5	0,11	0,087
		220	750	2500	73	0,516	0,407
		440	750	1850	73	2,06	1,785
	6	110	1000	4000	78	0,081	0,056
		220	1000	3000	79	0,326	0,208
160M		440	1000	2500	79	1,304	1,05
TOON	7,5	220	1500	4200	83	0,145	0,101
		440	1600	3750	83,5	0,516	0,407
	13	220	2240	4000	87	0,081	0,056
		440	2240	4000	87	0,278	0,175
	16	220	3150	4000	87	0,037	0,024
		440	3150	4000	88	0,145	0,101
180L	10	110	750	3300	77,5	0,065	0,044
		220	750	2500	79	0,203	0,145
		440	750	1850	78	0,99	0,644
	14	220	1000	3300	82	0,136	0,084
		440	1000	2500	83	0,585	0,462
	18,5	220	1500	3500	87	0,065	0,044

Продолжение табл. П.4.3

ВОВ, мм	P_{H} , $\kappa \mathrm{BT}$	$U_{\scriptscriptstyle H}$, B	$n_{_{\scriptscriptstyle H}}$,	n_{max} ,	$\eta_{_{\scriptscriptstyle{H}}}$,	$R_{_{\mathcal{A}}}$, OM	$R_{\partial.n.}$,
,		н, Б	об/мин	об/мин	%	я, ОП	Ом
		440	1500	3500	87	0,26	0,183
180L	25	220	2120	3500	89	0,042	0,03
TOUL		440	2200	3500	89,5	0,136	0,084
	32	440	3150	3500	90,5	0,065	0,044
	15	110	750	3300	82	0,031	0,02
		220	750	2500	82,5	0,125	0,08
		440	800	1850	83,5	0,5	0,264
	20	220	1000	3300	85,5	0,083	0,053
200L		440	1000	2500	85,5	0,286	0,168
	30	220	1500	3500	88,5	0,031	0,02
		440	1500	3500	88,5	0,125	0,08
	42	440	2360	3500	90,5	0,055	0,037
	55	440	3150	3500	91	0,031	0,02
	15	220	500	1800	77,5	0,196	0,079
		220	600	2100	83	0,161	0,074
2251	18,5	440	750	1500	83	0,473	0,208
225L	22	220	750	2500	83,2	0,095	0,05
	30	220	1060	2500	85	0,049	0,02
		440	1060	2250	85	0,196	0,08
	22	220	500	1500	78	0,122	0,064
	26,5	440	600	1800	81,5	0,38	0,195
	20,8	220	600	2100	82,2	0,082	0,047
	30	220	750	1500	84,3	0,05	0,031
		440	750	2000	84,3	0,261	0,115
2501	37	220	750	2000	83,2	0,051	0,031
250L		340	750	2000	83,2	0,122	0,064
	45	220	1000	2500	86	0,03	0,016
		340	1180	2500	86	0,065	0,031
		440	1000	1500	86	0,122	0,064
	71	440	1500	2800	88,5	0,65	0,031
	75	220	1500	2800	89	0,0128	0,0077
	37	220	500	1250	83,2	0,05	0,025
280L		440	500	1250	83,2	0,2	0,092
	45	220	600	1500	85,5	0,037	0,017

Продолжение табл. П.4.3

ВОВ, мм	$P_{H, \text{ KBT}}$	$U_{\scriptscriptstyle \rm H},{ m B}$	$n_{_{\scriptscriptstyle H}}$,	n_{max} ,	$\eta_{_{\scriptscriptstyle H}}$,	$R_{_{\mathcal{A}}}$, OM	$R_{\partial.n.}$,
		11 7 —	об/мин	об/мин	%	ж, с -:-	Ом
		440	600	1200	85,5	0,15	0,06
	55	220	750	1900	87,5	0,025	0,012
280L		440	750	1000	87,5	0,0992	0,052
200L	85	440	1000	2250 •	88,7	0,05	0,025
	132	220	1500	2600	91	0,006	0,034
		440	1500	1900	91	0,025	0,012
	45	440	500	1250	86	0,162	0,073
	55	220	600	1500	87	0,029	0,004
		440	600	1500	87	0,12	0,057
	75	220	750	1700	88,5	0,014	0,0083
315M		440	750	1800	88,5	0,068	0,0082
	100	440	1000	2200	88	0,04	0,0024
	110	220	1000	2250	89	0,0082	0,0045
	160	220	1500	2400	90	0,004	0,0025
		440	1900	2400	90	0,012	0,0071

Примечание. Данные указаны для климатического исполнения двигателей УХ и категории размещения 4. Буква L обозначает вторую длину сердечника якоря.

Таблица П.4.4 Технические характеристики двигателей серии 4ПО

Тип	P_{H} , $\kappa \mathrm{BT}$	$U_{\scriptscriptstyle{H}}$, B	$I_{\scriptscriptstyle H}$, A	<i>п_н</i> , об/мин	n _{max} , об/мин
	0,18	110	3,5	1000	2000
		220	1,6		
4ΠO80A1	0,25	110; 220	4,1; 1,7	1500	3000
	0,55	110	7,9	3000	4000
		220	3,8		
	0,25	110	4,0	1000	2000
4ПО80А2		220	1,8		
	0,37	110	5,8	1500	4000

Продолжение табл. П.4.4

Тип	$P_{H, \text{ KBT}}$	$U_{\scriptscriptstyle H},\mathbf{B}$	$I_{\scriptscriptstyle H}$, A	<i>п</i> _н , об/мин	n _{max} , об/мин
4ПО80А2	0,55	220 110 220	2,1 8,0 3,5	2200	4000
111000112	0,75	110 220	10,7 4,9	3000	4000
	0,37	110	4,8		
		220	2,4	1000	4000
		50	14,5		2000
	0,55	75	10,2		-
		110	7,7	1500	-
4П080В1		220	3		
411000D1	0,75	110	10,2		4000
		220	5	2200	4000
	1,1	50	31,2		4000
		75	21,1	3000	
		110	15,2		4000
		220	7,1		
	0,37	110	5,7	750	3000
		220	2,7		1500
	0,55	110	8,4	1000	4000
		220	3,9		2000
4ΠO100S1	0,75	110	10,4		
411010031		220	5,1	1500	4000
	1,1	110	14		4000
		220	6,7	2200	
	1,5	110	20		4000
		220	9,7	3000	4000
	0,55	110	8,6		3000
		220	3,8	750	1500
	0,75	110	10,4		4000
4ΠO100S2		220	4,8	1000	2000
	0,55	75	11,9	1000	-
		110	13,8		
	1,1	220	6,1	1500	4000

Продолжение табл. П.4.4

Тип	P_{H} , $\kappa \mathrm{BT}$	$U_{\scriptscriptstyle H}$, ${f B}$	<i>I</i> _" , A	<i>n</i> _н , об/мин	$n_{ m max} \ ,$ об/мин
4ΠO100S2	1,5	110 220 110	19,3 9,5 26,2	2200	4000
	2,2	220	13,4	3000	4000
	0,75	110	11		3000
		220	5,2	750	1500
	1,1	110	15,4		4000
		220	7,2	1000	2000
4TIO100I	1,5	110	19	1500	4000
4ΠΟ100L		220	9,3		
	2,2	110	28		
		220	13,9	2200	4000
	3	110	37,2		
		220	18,4	3000	4000
	1,5	110	19		
		220	9	1000	2000
	2,2	110	26,		
4ΠΟ112M1		220	12,8	1500	3000
41101121111	3	110	34,7		
		220	17	2200	4000
	4	110	44,8		
		220	22	3000	4000
		110	19,1		
	1,5	220	9,6	750	1500
		110	27,9		
	2,2	220	13,6	1000	2000
4ПО112М2	3	110	33,8		
71101121112		220	16,6	1500	3000
	4	110	45		
		220	22	2200	4000
	5,5	110	60		
		220	30	3000	4000

Таблица П.4.5 Технические характеристики двигателей серии 4ПБ

Тип	P_{H} , $\kappa \mathrm{BT}$	$U_{\scriptscriptstyle H}$, ${f B}$	<i>I</i> _n , A	<i>п</i> _н , об/мин	n _{max} , об/мин
	0,14	110	2,8	1000	2500
	ŕ	220	1,2		
4FTF00 & 1	0,18	110	2,9	1500	4000
4ПБ80А1		220	1,3		
	0,37	110	5,9	3000	4000
		220	2,8		
	0,18	110	2,9	1000	4000
		220	1,3		2500
	0,25	110	3,7		
411111111111111111111111111111111111111		220	16	1500	4000
4ПБ80А2		110	5,0		
	0,37	220	2,4	2200	4000
		110	8,1		
	0,55	220	3,8	3000	4000
	0,25	110	3,8		4000
		220	1,8	1000	2500
	0,37	110	5,1		
<i>Α</i> ΠΓ0Λ D 1		220	2,4	1500	4000
4ПБ80В1	0,55	110	7,3		
		220	3,5	2200	4000
	0,75	110	9,3		
		220	4,5	3000	4000
	0,25	110	4,2	750	4000
		220	1,9		
	0,4	110	6,1	1000	2500
		220	2,8		
4ПБ100S1	0,55	110	7,7	1500	4000
411010031		220	3,6		
	0,75	110	9,6	2200	4000
		220	4,6		
	1,1	110	13,9	3000	4000
		220	6,7		

Продолжение табл. П.4.5

Тип	P_{H} , $\kappa \mathrm{BT}$	$U_{_{\scriptscriptstyle{H}}}$, B	$I_{\scriptscriptstyle H}$, A	$n_{_{\scriptscriptstyle H}}$,	n_{\max} ,
		n 7 —	,	об/мин	об/мин
	0,37	110	5,4	750	3000
		220	2,6		2000
	0,5	110	7	1000	
		220	3,3		4000
4ПБ100S2	0,75	110	9,3	1500	
111010002		220	4,5		4000
	1,1	110	13,3	2200	
		220	6,5		4000
	1,5	110	17,8	3000	
		220	8,7		4000
	0,4	110	6	750	3000
		220	3Д		2000
	0,6	110	8	1000	4000
		220	3,8		2500
4ПБ100L1	0,9	110	10,6	1500	
HIDIOOLI		220	5,2		4000
	1,3	110	15,3	1500	
		220	7,4		4000
	1,8	110	20,7	2200	
		220	10	3000	4000
	0,5	110	8	750	2500
		220	3,9		2000
	0,75	110	10,5	1000	3000
		220	5		2500
4ПБ112М1	1,1	110	14	1500	4000
4110112111		220	6,7		
	1,5	110	18,3 ,	2200	4000
		220	9,1		
	2,2	110	25,6	3000	4000
		220	12,5		
		110	13		2500
ДПГ11 2 М2	1	220	6,4	1000	
4ПБ112М2		110	17,6	1500	4000
	1,5	220	8,8		

Таблица П.4.6 Технические характеристики двигателей серии 4ПФ

T.	PD-	T .		$n_{_{\scriptscriptstyle H}}$,	$n_{\rm max}$,
Тип	$P_{H, \text{ KBT}}$	$I_{_{\scriptscriptstyle H}}$, A	$\eta_{_{\scriptscriptstyle H}}$, $\%$	об/мин	об/мин
	Harman			l	ОО/МИН
			жение 220 І		
	4	24	72,3	900	
4ΠΦ112S	3,15	19,8	69,3	750	
	2	14,5	57,6	450	5000
4ПФ112М	4,25	26,4	68	730	
	3	20,1	60,3	475	
4ΠΦ112L	3,55	24,5	60,1	425	
	15	85,4	77,9	1400	
4ПФ132S	7,5	43,6	76	1000	
	6	32,7	74	875	
	4,25	26,9	65	580	
	11	61,5	78,5	1060	4500
4ПФ132М	8,5	48,6	76	875	
	8	47,3	68	600	
4ΠΦ132L	11	62,8	76	800	
	8,5	54,4	68	515	
4ΠΦ160S	15	79,6	80,7	850	4000
	11	66,2	70,5	530	
4ПФ160М	15	85,6	75,3	580	
4ПФ180	17	99,4	73	500	3800
4ПФ180М	20	114,5	75	475	

Технические характеристики двигателей серии Д

	Закрытые в часовом режиме и продуваемые в длительном режиме (ПВ = 100 %)			К	раткон	време	в повт нном ј = 40 %)	режим		
		τ	Тастот	a	Mo	ощнос	$_{\Gamma \mathbf{b}} P_{H}$, кВт і	и част	гота
Тип		враі	цения	$n_{_{\scriptscriptstyle H}}$,		,		
	P_{H} ,		, мин, п		В	ращен	ия $n_{_{\!\scriptscriptstyle H}}$	и, об/м	ин, п	ри
			бужде			Е	зозбух	кдени	И	
	кВт				(\overline{C}	C	Ш		Ш
		C	СШ	Ш	P_{H}	$n_{_{\scriptscriptstyle H}}$	P_{H}	$n_{_{\scriptscriptstyle H}}$	P_{H}	$n_{_{\scriptscriptstyle H}}$
	1			Tuxo	ходны	e			!	
Д-12	2,5	1100	1175	1180	2,4	1150	2,4	1230	2,4	1230
Д-21	4,5	900	1050	1030	3,6	1040	3,6	1140	3,6	1080
Д-22	6,0	850	1050	1100	4,8	970	4,8	1120	4,8	1150
Д-31	8,0	800	870	840	6,8	900	6,8	910	6,8	880
Д-32	12,0	675	780	770	9,5	760	9,5	840	9,5	800
Д-41	16,0	650	700	690	13,0	730	13,0	740	13,0	720
Д-806	22,0	575	650	650	19,0	640	17,0	730	16,0	710
Д-808	37,0	525	575	575	24,0	615	24,0	650	22,0	630
Д-810	55,0	500	-	550	35,0	610	-	-	29,0	600
Д-812	75,0	475	-	515	47,0	560	-	-	38,0	565
Д-814	110,0	460	-	500	66,0	565	-	-	55,0	560
Д-816	150	450	-	480	85	540	-	-	70	535
Д-818	185	410	-	450	100	515	-	-	83	470
	T		1	Быстр	оходн	1			1 1	
Д-21	5,5	1200	1450	1440	4,4	1340	4,4	1550	4,4	1500
Д-22	8,0	1200	1390	1510	6,5	1300	6,5	1475	6,5	1570
Д-31	12,0	1100	1280	1360	9,5	1190	9,5	1360	9,5	1420
Д-32	18,0	960	1100	1190	13,5	1100	13,0	1200	13,0	1240
Д-41	24,0	970	1120	1100	18,0	1060	18,0	1160	17,5	1160
Д-806	32,0	900	980	1000	23,0	1010	23,0	1060	21,0	1060
Д-808	47,0	720	800	800	30,0	850	30,0	860	26,0	825

Примечание. С - сериесное, Ш - шунтовое, СШ -смешанное.

П.5.1. Предохранители

Предохранители - это электротехнические аппараты, предназначенные для защиты электрических цепей и установок от токов короткого замыкания и перегрузки. Преимущественно они используются для выполнения первой из названных функций, а защиту электрических цепей и установок от токов перегрузки осуществляют с помощью автоматических выключателей и тепловых реле. Действие предохранителей состоит в сгорании их плавкой вставки при протекании по ним токов срабатывания, вследствие чего и происходит разрыв электрической цепи.

По своей конструкции предохранители делятся на открытые, у которых плавкая вставка не защищена патроном или размещена в открытой с торцов трубке, закрытые и засыпные с расположением вставки в патроне, заполненном мелкозернистым наполнителем, например кварцевым песком. Для лучшего использования наполнителя как теплоотводящей и дугогасящей среды некоторые предохранители имеют несколько параллельно соединенных вставок, суммарное сечение которых эквивалентно сечению одной вставки на тот же ток. Вставки предохранителей изготавливаются из меди, цинка, алюминия, свинца или серебра.

Особую группу образуют жидкометаллические и инерционные предохранители. В жидкометаллических предохранителях в качестве плавкого элемента используется жидкий металл (чаще галлий и его сплавы), находящийся в герметизированном или вакуумированном патроне. Этот тип предохранителя обычно используется в сочетании с каким-либо защитным аппаратом, например автоматическим выключателем.

Инерционные предохранители имеют две вставки разного сечения и исполнения и обеспечивают защиту как от токов короткого замыкания, так и от сравнительно небольших токов перегрузки.

Основной характеристикой предохранителя является его времятоковая характеристика, представляющая собой зависимость времени сгорания плавкой вставки от величины протекающего тока. Она в количественном выражении показывает, что чем больше протекающий по предохранителю ток, тем быстрее сгорает плавкая вставка; при номинальном токе сгорания плавкой вставки не

происходит вообще. Иногда защитная способность предохранителей оценивается произведением квадрата тока на время, что эквивалентно количеству выделяемой в предохранителе теплоты.

В электрических сетях и установках применяются несколько типов предохранителей. В табл. П.5.1.1 приведены параметры предохранителей серий ПН2, имеющих фарфоровый корпус прямоугольного сечения, и НПН, выполняемых со стеклянным корпусом круглого сечения, а в табл. П.5.1.2 - параметры предохранителей разборного типа ПР-2.

Таблица П.5.1.1 Технические характеристики предохранителей серий НПН и ПН2

	Номи	нальный ток, А	Предельный ток
Тип	предохран-	плавких вставок	отключения, А, при
	ителя	IIJIADKIIA BCIABUK	напряжении до 500 В
НПН15	15	6, 10, 15	10000
НПН60М	60	20, 25, 35, 45, 60	
ПН2-100	100	30, 40, 50, 60, 80, 100	50000
ПН2-250	250	80, 100, 120, 150, 200, 250	40000
ПН2-400	400	200, 250, 300, 350, 400	25000
ПН2-600	600	300, 400, 500, 600	25000
ПН2-1000	1000	500, 600, 750, 800, 1000	10000

Таблица П.5.1.2 Технические характеристики предохранителей типа ПР-2

Тип	Номи- нальный ток, А	Номинальные токи плавких вставок, А	отключ		Габаритные размеры, мм
ПР-2-15	15	6, 10, 15	8000	7000	171x24,5x33

Тип	Номи- нальный ток, А	Номинальные токи плавких вставок, А	Предельный ток отключения, А, при напряжении		Габаритные размеры, мм
			380 B	500 B	
ПР-2-60	60	15, 20, 25, 35, 45,60	4500	3500	173x30,5x43
ПР-2-100	100	60, 80, 100	-	_	247x43x56
ПР-2-200	200	100, 125, 160, 200	11000	10000	296x56x76,5
ПР-2-350	350	200, 225, 260, 300, 350	13000	11000	346x72x10
ПР-2-600	600	350, 430, 500, 600	23000	-	442x140x154
ПР-2-1000	1000	600, 700, 850, 1000	20000	20000	580x155x154

Таблица П.5.1.3 Технические характеристики предохранителей серии ПП

Тип	Ток, А	Напряжение, В	Предельный ток отключения, кА
ППД12-43133	1600	150	100
ППД 12-40433	6300	450	200
7 1			200
ПП51-3340354	160	380	-
ПП41	31630	760, 440	100
ПП57-31	100	До 660	-
ПП57-34	250	До 660	-
ПП57-37	400	До 660	-
ПП57-39	630	До 1150	-
ПП57-40	800	До 1250	-
ПП71	550750	1300	40
ПП61	40160	380	100

Для защиты полупроводниковых установок применяются быстродействующие предохранители серий ПП и ПНБ. В табл.

П.5.1.3 приведены параметры предохранителей серии ПП.

Для малогабаритных распределительных устройств выпускаются резьбовые предохранители серии ГТРС на токи до 100 A и напряжение до 500 B.

П.5.2. Резисторы

Резисторами называются электротехнические устройства, предназначенные для увеличения активного сопротивления электрических цепей низкого и высокого напряжения. По своему назначению резисторы делятся на следующие основные группы:

- а) пусковые, регулирующие и тормозные, которые используются для ограничения тока при пуске, торможении и реверсе электродвигателей, а также для регулирования их скорости вращения;
- б) регулировочные, используемые для регулирования тока возбуждения электрических машин;
- в) нагрузочные, применяемые в электроустановках для поглощения электрической энергии и в испытательных стендах;
- г) специальные, применяемые в различных электроустановках в качестве балластных, добавочных, экономических, разрядных, заземляющих и демпферных резисторов.

Резисторы с регулируемым сопротивлением получили название реостатов.

По своему конструктивному исполнению силовые резисторы литыми, штампованными ленточными, ΜΟΓΥΤ витыми В ленточными проволочными. качестве И материалов ДЛЯ резисторов используются литейный чугун, изготовления сталь, манганин, константан и сплавы железохромоалюминиевые (фехрали), хромоалюминиевые. Резисторы хромоникелевые И могут использоваться как в виде отдельных резистивных элементов, так и в составе блоков, ящиков или панелей резисторов.

Параметры литых плоских резисторов серии СЖ приведены в табл. П.5.2.1.

В табл. П.5.2.2 и П.5.2.3 содержатся технические данные соответственно штампованных элементов серии ШЭ и штампованных ленточных элементов серии ЛФ.

Таблица П.5.2.1 Технические характеристики резисторов серии СЖ

	Сопротив-	Длительно	Кратковреме	Постоянная	Macca,
Тип	ление при	допустимый	нная нагрузка	времени,	•
	20 °С, Ом	ток, А	(5 мин), А	МИН	КГ
СЖ60	0,0044	220	465	14 16	1,77
СЖ61	0,0057	190	420	1416	1,45
СЖ62	0,0075	160	360	14 16	1,5
СЖ63	0,0095	140	310	14 16	1,3
СЖ64	0,0145	120	255	1416	1,3
СЖ65	0,0215	95	200	14 16	1,2
СЖ66	0,0325	72	150	1416	1,3
СЖ67	0,0495	60	115	14 16	1,2
СЖ68	0,06	55	100	14 16	1,3
СЖ69	0,091	46	80	1416	1,3

Таблица П.5.2.2 Технические характеристики резистивных элементов серии ШЭ

	Сопротивле-	Длительно	ельно Кратковременная		Превышение		
Тип	ние при	допустимый	нагрузка, А		температуры,		
	20 °С, Ом	ток, А	60c	30c	10c	2c	°C
ШЭ1	0,042	35	55	75	125	290	150
ШЭ2	0,021	50	105	138	250	580	150
ШЭЗ	0,014	60	155	210	350	860	150

Таблица П.5.2.3 Технические характеристики резистивных элементов серии ${\it \Pi}\Phi$

Тип	Сопротивление при 20 °C, Ом	Длительно допустимый ток, А	Рабочая температура, °C	Масса,
ЛФ1	0,32	140	450	4,5
ЛФ2	0,45	140155	450	4,4

Тип	Сопротивление при 20 °C, Ом	Длительно допустимый ток, А	Рабочая температура, °C	Масса, кг
ЛФ10	0,10,3	140 270	600	5,6
ЛФ11	0,051,0	310540	600	21
ЛФ11Б	0,12,0	180 280	600	17
ЛФ8	0,4	100	450	-

Резисторы серий ЭСЗ и ЭС10 предназначены для комплектации блоков резисторов серии ЯС. Параметры резисторов серии ЭСЗ приведены в табл. П.5.2.4. Резисторы типа Э10 имеют сопротивление от 0,0777 до 1,37 Ом и выпускаются на номинальные токи от 23,5 до 109 А.

Таблица П.5.2.4 Технические характеристики элементов серии ЭСЗ

Сопротивление резистора, Ом	Номинальный ток, А	Допустимое сопротивление на ступень, Ом	Масса, кг
0,642	23,6	0,043	0,55
0,481	27,4	0,032	0,59
0,402	30,1	0,027	0,63
0,320	33,8	0,021	0,66
0,261	37,9	0,017	0,74

Проволочные трубчатые резисторы серии ПТ предназначены для работы в цепях переменного и постоянного тока в закрытых помещениях и имеют параметры, приведенные в табл. П.5.2.5.

Блоки резисторов представляют собой электрические устройства, состоящие из нескольких резисторов, включенных по определенной схеме. К ним относятся блоки СЖ с двухрядным расположением резистивных элементов в количестве от 56 до 112 штук. Общее сопротивление блоков может составлять от 0,1 до 10 Ом, а масса - от 80 до 225 кг. Они выпускаются на напряжение 220...4000 В, продолжительные токи 46...600 А с естественной вентиляцией в незащищенном исполнении.

	Номи-		Pasi	меры, мм		
Тип	нальная мощ- ность, Вт	Диапазон сопротив- лений, Ом	наружный диаметр	внутрен- ний диаметр	длина	Масса,
ПТ-8Т2	8	3,92200	15	6	35	20
ПТ-16Т2	16	3,95600	15	6	80	31
ПТ-25Т2	25	3,95600	26	16	80	56
ПТ-50Т2	50	8,215000	30	20	125	96

30

20

175

135

8,2...33000

ПТ-75Т2

75

Технические характеристики резисторов серии ПТ

Блоки резисторов серии ЯС предназначены для работы в электрических цепях переменного тока с напряжением до 660 В, частотой 50 и 60 Гц и постоянного тока с напряжением 440 В в качестве пускорегулирующих, тормозных, балластных, добавочных и др. Параметры этих блоков приведены в табл. П.5.2.6. Эта же таблица содержит технические характеристики блоков серий СВ и СН, в которых используются элементы серии ШЭ, и блоков БТС-1, ББС-2, БКФ, БЛФ-1, БЛФ-2 и БТС-7, широко используемых в самых различных электротехнических устройствах.

Пусковые и пускорегулирующие реостаты выпускаются с естественным и масляным охлаждением и различаются по номинальным напряжению и току, количеству ступеней, наличию или отсутствию защит, используемым резистивным элементам и конструктивному исполнению.

Реостаты серий РП, РЗП и РЗР предназначены для управления двигателями постоянного тока мощностью до 19 кВт при напряжении сети 110 В, мощностью до 42 кВт при напряжении 220 или 440 В (РП и РПЗ) и мощностью до 36 кВт при напряжении 220 В (РЗР). Реостаты серии РП имеют минимальную электрическую защиту, а серий РЗП и РЗР - минимально-максимальную. Реостаты серии РП состоят из проволочных резистивных элементов типа СН, СНл и ЦФ. Другие параметры резисторов этих серий приведены в табл. П.5.2.7.

Технические характеристики блоков резисторов

Тип	Количест- во и тип элементов	Сопротивление ступение, Ом	Мощность, кВт	Длитель- ный ток, А	Масса,
БТС-1	12 ЛФ11	1,52	2340	До 540	1020
ББС-2	6 ЛФ11Б	0,52	745	До 270	505
БКФ	280 КФ	0,221	2800	-	3150
БЛФ-1	9ЛФ1	2,88	140	До 140	250
БЛФ-2	9ЛФ2	4,05	220	До 155	240
БТС-7	5 ЛФИ	3,32	1200	-	750
ЛФ-238	4ЛФ10	10.22	-	190	46,5
		20,037	-	265	
		30,019	-	400	
ЛФ-269	3 ЛФ116	10,351	-	100	45,5
		20,132	-	150	
		30,089	-	200	
CH-12	6ШЭ	-	12,0	До 60	140
CH-16	8 ШЭ	-	16,0	До 60	160
СП-20	10 ШЭ	-	20,0	_	185
CH-24	12 ШЭ	-	24,0	_	210
CH-28	14 ШЭ	-	28,0	_	240
ЯС-1	40 ЭC	3,08,0	До 5,8	3924	2723
ЯС-2	20 ЭC	0,11,6	До 5,8	21554	3923
ЯС-3	11 Э C	0,2x11260x11	-	1,242	1520
ЯС-4	5	0,0986,85	-	24215	1722
ЯСТ-1	12x3	0,9x32,4x3	-	3924	2522
ЯСТ-2	6x3	0,03x30,48x3	_	21554	3623

В табл. П.5.2.8 приведены технические данные маслонаполненных пусковых реостатов серии РМ, применяемых для пуска асинхронных двигателей с фазным ротором. Они допускают два-три пуска из холодного состояния, после чего должны быть паузы до следующих включений не менее двойной продолжительности включения.

Таблица П.5.2.7 Технические характеристики реостатов серий РП, РПЗ и РЗР

Тип	Номинальный	Число	о ступеней	Magaa Kr
ТИП	ток, А	пусковых	регулировочных	Масса, кг
РП-2511	31,5	4	-	5,5
РЗП-2	40	7	-	12
РЗП-2А	40	7	-	14
РЗП-3	125	8	-	21
РЗП-ЗА	125	8	-	27
РЗП-4	200	12	-	52
РЗП-4А	200	12	-	55
РЗП-4Б	200	12	-	60
РЗП-4В	200	12	-	65
РЗП-21	40	6	10	12
РЗП-21А	40	6	10	14
РЗП-3 1	125	7	15	22
РЗП-231А	125	7	15	25
РЗП-231Б	125	7	15	29
РЗП-42	200	10	20	50
РЗП-42А	200	10	20	55
РЗП-42Б	200	10	20	60

Таблица П.5.2.8 Технические характеристики пусковых реостатов серии РМ

Тип	Номи- нальный ток, А	Мощность двигателя, кВт	Максималь- ное напряжение, В	Число ступе- ней	Масса без масла, кг
РМ-1531УЗ	210	24,5; 29,5; 40	400	8	23,5
	250	50; 55			
РМ-1631У3	500	150; 175	600	9	70
РМ-16541УЗ	400	75; 100	600	9	70
РМ-16641УЗ	400	100	600	9	80
РМ- 1671 УЗ	750	300; 410; 500	1200	11	180
РМ-16761УЗ	600	200; 300	1200	10	145

Реостаты возбуждения серий РВ, РВМ, РТМ, МР, РЗВ, РПВ, РШН, РШНД и РШМ предназначены для регулирования тока возбуждения электрических машин при напряжениях до 440 В и могут выполняться с ручным, дистанционным ручным и электродвигательным приводами. Параметры некоторых типов реостатов возбуждения содержатся в табл. П.5.2.9.

Таблица П.5.2.9 Технические характеристики реостатов возбуждения

Тип	Предельный ток, А	Мощность, кВт	Число ступеней
P-21	-	0,15	42
P-22	-	0,3	42, 84
РПВ-01	10	0,6	2x17
РПВ-11	10	0,9	2x17
PBM-1	30	2,0	100
PBM-2	60, 120	12,0	130, 92
PBM-3	60, 120	36,0	130, 92
РЭВ-01А	15	0,3; 0,45	32
РЭВ-11Б	15	0,65	40
РЭВ-21А	15	0,9	60
РЭВ-31А	15	1,2	64
РЭВ-41А	25	2,5	120
MP-120	350, 125	18	34, 44
MP-160	350, 125	24	34, 44
MP-240	350, 125	36	34, 44
MP-360	350, 125	54	34, 44
MP-440	350, 125	66	34, 44
MP-520	350, 125	78	34, 44

В табл. П.5.2.10 приведены технические характеристики реостатов серии P, используемых для регулирования скорости двигателей и других целей.

Резистор выбирается по двум основным параметрам - величине сопротивления и току, при этом его сопротивление должно равняться расчетному, а номинальный ток - соответствовать эквивалентному по нагреву току нагрузки, что обеспечит нормативный нагрев резистора.

Подбор величины сопротивления осуществляется за счет последовательного, параллельного и смешанного соединения отдельных элементов в секции.

Таблица П.5.2.10 Технические характеристики реостатов серии Р

Тип	Предельный ток, А	Мощность, кВт	Сопротивление, Ом
P-0,5	1,127,5	0,6	5000,8
P-1	1,127,5	1,2	10001,6
P-2	1,938	1,8	5001,25
P-3	2,738	2,4	3351,65
P-4	3,640	3,2	2502,0

Для продолжительного режима работы S1 проверка резистора по нагреву состоит в сопоставлении рабочего тока нагрузки с номинальным током резистора.

Для кратковременного (S3) и повторно-кратковременного (S2) режимов работы нагрузки необходимо вначале рассчитать эквивалентные токи с помощью расчетных коэффициентов, зависящих от времени протекания тока t_p по резистору и его постоянной времени нагрева.

Приложение 6

Таблица П.6.1

Варианты заданий на самостоятельную работу

№	Аппараты и установки	Подводимая
варианта		мощность к
•		валу
		установки
	Бродильное производство	
0	Мешалка заторного котла	3
1	Линия розлива пива	90
2	Ковшовый ворошитель солода	9
3	Росткоотбойная машина	7
4	Ковшовый ворошитель солода	13
5	Полировочная машина	15
6	Росткоотбойная машина	3
7	Мешалка варочного агрегата	1
8	Мешалка установки для дробления хмеля	4
9	Автомат для перемешивания пива в	0,3
	бутылках	
10	Инспекционный автомат	0,5
11	Мешалка варочного агрегата	3
12	Насос установки для дробления хмеля	15
13	Этикеровочный автомат	1
14	Полировочная машина	10
15	Мешалка установки для дробления хмеля	2
	Мясная промышленность	
16	Нория для подъема кормовой муки	1,5
17	Мездрильная машина	29
18	Вертикальная скребмашина	3
19	Центрифуга для обработки субпродуктов	1,2
20	Шлямовочная вентиляторная машина	2,5
21	Двухвальцовая дробилка для кости	10
22	Молотковая дробилка для кости	5
23	Машина для разрубки голов	4,3
24	Мельница	3

Продолжение табл. П.6.1

$N_{\underline{0}}$	Аппараты и установки	Подводимая		
варианта		мощность к		
		валу		
		установки		
	Мясная промышленность			
25	Машина для резки мороженного мяса	15		
26	Салорезка	2,8		
27	Волчок	20		
28	Кутер	13		
29	Горизонтальная шпигорезка	1,7		
30	Фаршемешалка	2,8		
31	Шнековый пресс непрерывного действия	12		
32	Центрифуга непрерывного действия	2,1		
33	Центрифуга периодического действия	5		
34	Дымогенератор	4,3		
35	Аппарат для приготовления чешуйчатого	2,8		
	льда			
36	Аппарат для охлаждения жира	4		
37	Двухвальцовая сушилка	2		
38	Сито-бурат	1,7		
39	Сепаратор	8		
40	Насос гидравлического пресса	2,4		
	Хлебопекарная промышленность			
41	Ковшовый элеватор (нория)	7,2		
42	Тестомесильная машина	10		
43	Тестозакаточная машина	0,65		
44	Конвейер для хлебопекарной печи	2,9		
45	Тестомесильная машина	6,5		
46	Тестозакаточная машина	1,1		
Установки общепромышленного назначения				
47	Кондиционер	5		
48	Воздуходувка	3		
49	Вентилятор воздушный	2		
50	Транспортер ленточный	10		

202

Продолжение табл. П.6.1

$N_{\underline{0}}$	Аппараты и установки	Подводимая
варианта		мощность к
		валу
		установки
	Мясная промышленность	
51	Конвейер пластинчатый	110
52	Кондиционер	50
53	Компрессор	20
54	Насос для подачи воды	4,5
55	Вентилятор воздушный	6
56	Насос для подачи воды	11
57	Конвейер пластинчатый	50
58	Транспортер ленточный	35
59	Компрессор	7
60	Насос для подачи воды	25

Пример выполнения самостоятельной работы

Задание

Необходимо подобрать электродвигатель к заторному котлу, предназначенного для приготовления затора и отварки части затора в пивоваренном производстве.

Подводимая мощность к входному валу мешалки составляет 3 кВт, а скорость вращения вала состовляет 50 об/мин.

В задачу выбора электродвигателя входит:

- о выбор рода тока и номинального напряжения;
- о выбор номинальной частоты вращения;
- о выбор конструктивного исполнения
- о определение номинальной мощности и выбора соответствующего двигателя по каталогу;
 - о тепловой расчет двигателя;
 - о выбор коммутационной аппаратуры;
- о изображение схемы питания и управления двигателем.

Введение

При проектировании новых электроприводов или модернизации существующих выбирают такие серийно выпускаемые двигатели, которые обеспечивали бы наилучшее выполнение на них функций и соответствовали бы условиям работы электропривода и рабочей машины. Их паспортные данные (мощность, напряжение, ток, частота и т.д.) должны быть близки к расчетным при работе данного электропривода, а их конструктивное исполнение соответствовать способу размещения в электроприводе и условиям окружающей среды.

Обоснованный выбор электродвигателя является весьма важной задачей, во многом определяющим технико-экономические показатели работы комплекса "электропривод - рабочая машина".

П.7.1. Описание конструкции и принцип работы

Заторный котел (рис. П.7.1) представляет собой цилиндрический сосуд с двойным сферическим днищем, образующим паровою рубашку. Паровая рубашка имеет соответствующие фланцы и устройства для подвода пара, отвода воздуха и конденсата.

В нижней части днища котла находиться разгрузочное устройство для спуска части затора (густой фазы) на отварку или выпуска всего затора при передаче в фильтрационный чан.

На крышке котла имеется вытяжная труба. Для уменьшения потерь дробленого солода на распыление перед затиранием солод смешивают с водой в предзаторнике, представляющий собой цилиндр, укрепленный на крышке заторного котла; предзаторник соединен трубой с бункером для дробленого солода. Рядом с предзаторником установлен смеситель для холодной и горячей воды, позволяющий получить определенную температуру, требуемую для приготовления затора. Для контроля температуры воды на смесителе установлен термометр. Также от смесителя имеется патрубок с штуцером присоединения вентилем ДЛЯ шланга использования теплой воды на другие нужды цеха.

Котел снабжен пропеллерной мешалкой с нижним приводом, который осуществляется от червячного редуктора, установленного на фундаменте совместно с электроприводом, а также имеется стяжная трубка (декантатором) для отбора жидкой части (верхнего слоя) затора. Для удобства промывки труба выполнена легкосъёмной.

В одном из заторных котлов производят затирание и осахаривание, во втором – нагревание и кипячение отвара.

На крышке котла находиться патрубок для возврата части затора, отваренного в другом котле, при этом, если соединить патрубок с распределительным устройством, то затор можно передавать в следующих направлениях:

- 1. Возвращать отбираемую из котла часть затора непосредственно в тот же котёл;
- 2. Передавать часть затора на отварку в другой заторный котёл, входящий в варочный агрегат;
- 3. Передавать в фильтрационный чан приготовленный затор из любого заторного котла, входящего в четырёхпосудный варочный агрегат;

4. Передавать приготовленный затор из заторного котла в любой из двух фильтрационных чанов, входящих в шестипосудный варочный агрегат (в двухпосудных варочных устройствах распределительное устройство не применяется).

Дробленый солод (зерноприпасы) поступают в предзаторник, где смачивается теплой водой из смесителя, затем в виде кашицы сливается в котел. После отварок заторная масса нагнетается насосом обратно в котел для кипячения, а откуда подается в фильтрационный чан.

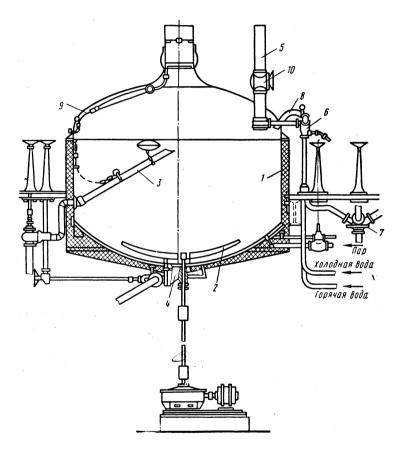


Рис. П.7.1. Заторный котел: 1 – корпус; 2 – пропеллерная мешалка; 3 – стяжная труба; 4 – труба для спуска отварок; 5 – труба затора ИЛИ поступления солода; 6 - смеситель горячей и холодной воды; 7 – распределительный кран (для направления затора в соседний заторный котел или на фильтрование); 8 – труба для возврата отварок в заторный смотровой люк; 10 котел; предзаторник.

П.7.2. Выбор электродвигателя

П.7.2.1. Выбор рода тока и напряжения двигателя

Выбранный двигатель, а это двигатель серии 4A работает от трёхфазной сети с напряжением 380В и частотой 50Гц. Обмотки двигателя будут соединяться по схеме звезда, и иметь число выводов концов равное 6.

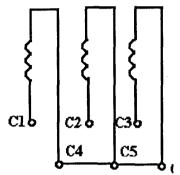


Рис. П.7.2. Схема включения.

П.7.2.2. Выбор номинальной частоты вращения

Частота вращения мешалки заторного котла равна 50 оборотов в минуту. Для того чтобы скорости двигателя и механизма как-то согласовывались между собой, был конструктивно установлен червячный редуктор РГНВ–125–31–1 с передаточным числом 30, который позволяет выбрать двигатель с частотой вращения 1500 оборотов в минуту.

Достоинства червячной передачи:

- 1. Плавность и бесшумность;
- 2. Способность передачи к самоторможению;
- 3. Большое передаточное число по сравнению с зубчатыми передачами

П.7.2.3 Выбор конструктивного исполнения

Электродвигатель должен быть защищен от проникновения внутрь оболочки проволоки и твердых тел размером более 1 мм, а также должна быть защита от брызг — это вода, разбрызгиваемая на оболочку электродвигателя, которая не должна оказывать вредного

воздействия на работу двигателя. К выше приведенному описанию подходит только степень защиты IP44 и IP23. Выбираем IP44.

Так как электродвигатель работает в течение длительного периода времени, то существует возможность нагрева разных спаев, контактов и проводов, поэтому выбираем изоляцию класса А (пропитанные волокнистые материалы) которая допускает температуру нагрева до 120 градусов по Цельсию.

В качестве способа охлаждения применяем 1СА0180.

П.7.2.4 Построение нагрузочных диаграмм

Момент на валу заторного котла равен:

$$M = \frac{9550 \cdot P_{pa6M}}{n} = \frac{9550 \cdot 3}{50} = 573H \cdot M$$

Приведенный момент инерции мешалки определяем по теореме Штейнера, момент инерции мешалки равен сумме моментов инерции лопастей и основания мешалки.

$$J_{M} = 0.25mR^{2} + m(R + R_{1}) + 0.5m_{1}R_{1}^{2} = 0.25*3*0.1^{2} + 3*(0.1 + 0.05) + 0.5*5*0.05^{2} = 0.46375\kappa 2*M^{2}$$
 где, m и m_{1} — масса лопастей и основания мешалки;

 R, R_1 - радиусы лопастей и основания мешалки.

Приведенный момент инерции на валу двигателя:

$$J = J_{\partial s} + J_{pe\partial} + \frac{J_{M}}{i^{2}} = 0.0113 + 0.4 * 0.0113 + \frac{0.4637}{30^{2}} = 0.0163 \kappa z * M^{2}$$

где $J_{\partial s}$ -момент инерции двигателя,

 $J_{\it ped}$ -момент инерции редуктора (принят равным $J_{\it ped}=0.4J_{\it dg}$),

i – передаточное отношение редуктора.

Угловая скорость двигателя:

$$\varpi = 2 * \pi * n = 2 * 3.14 * 1500 / 60 = 157 pad / c$$

Среднее угловое ускорение привода (среднее время пуска берем 5с.):

$$\varepsilon_{cp} = \frac{\Delta \varpi}{\Delta t} = \frac{157 - 0}{5 - 0} = 31.4 \frac{pa\partial}{c}$$

Момент динамический:

$$M_{\partial u_H} = J * \varepsilon_{cp} = 0.0163 * 31.4 = 0.512 H * M$$

Следовательно при пуске двигатель должен развивать момент:

$$M_n \geq M_{\partial e.nyc\kappa}$$
.,

где $M_{\partial \mathit{в.пуск}}$ - момент требуемый приводу при пуске.

$$M_{\partial s.nyc\kappa} = M_{\partial uh} + Mc/(i*\eta_{gh}) = 0.512 + 573/(30*0.8) = 23.9H*M$$

На рис.П.7.3. приведена нагрузочная диаграмма где обозначены:

M_c – суммарный момент статического сопротивления.

М_{лин} – динамический момент ускорения и замедления.

 $M_{\rm дв}$ — алгебраическая сумма статического и динамического моментов, который должен развивать двигатель.

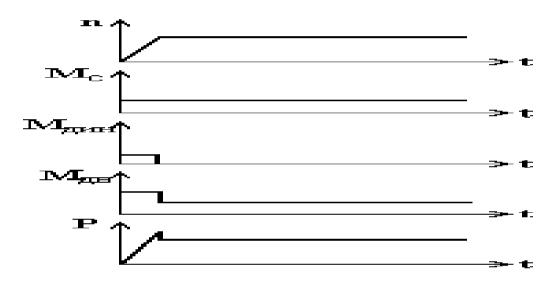


Рис.П.7.3. Нагрузочная диаграмма

Из нагрузочной диаграммы видно, что все зависимости имеют экстраполятор нулевого уровня, которые не зависят от времени работы двигателя и имеет постоянные значения, т.е. работает в течение длительного промежутка времени

П.7.2.5 Выбор двигателя по мощности

Заторный котел имеет постоянное значение, подаваемое на него мощности в течение длительного промежутка времени — это видно из нагрузочной диаграммы (рис.П.7.3). За это время электродвигатель успевает нагреться до отметки постоянно температуры, что позволяет выбрать двигатель, работающий в длительном режиме (рис. П.7.4).

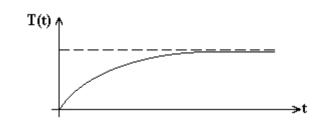


Рис. П.7.4. График нагрева электродвигателя

Мощность, подводимая к валу заторного котла равна 3 кВт. Двигатель выбирается по каталогу к ближайшему большему значению по мощности учитывая соотношения:

$$P_{HOM} > P_{\partial G}$$
.

Номинальная мощность двигателя для работы в длительном режиме сводиться к подсчету мощности исполнительного механизма, приведенного к валу двигателя с учетом КПД передачи червячного редуктора.

$$P_{\partial B} = \frac{P_{pa\delta M}}{\eta} = \frac{3}{0.8} = 3.75 \kappa B_m$$

По каталогу электродвигателей, выбираем асинхронный двигатель с короткозамкнутым ротором, частота вращения которого равна 1500 оборотов в минуту – серия 4A и AИР.

Характеристика электродвигателей приведена в таблице П.7.2.1.

Таблица П.7.2.1

Серия двигателя	Р _{ном} , кВт	S, %	$\eta,\%$	$\cos(\varphi)$	Цена, руб.
АИР100L4	4	5.3	85	0.84	2070
4A100L4Y3	4	5.3	84	0.84	940

Т.к. целью данной работы является выбор электродвигателя, то с экономической точки зрения электродвигатель 4AM100L4Y3 из выше приведенной таблице будет наилучшем выбором, где сочетается в себе цена и надежность.

Осталось проверить двигатель по пусковому моменту:

$$M_n = 1.8 * \frac{9550 * 4}{1500} = 45.8H * M.$$

Следовательно, двигатель подходит по пусковому моменту, т.к. выполнено условие $M_n \geq M_{\partial e.nyc\kappa}$.

П.7. Защита и управлением двигателем

П.7.1. Выбор аппаратуры управления и защиты электродвигателем

Для дистанционного управления трехфазным асинхронным двигателем с короткозамкнутым ротором типа 4AM100L4Y3 используем магнитный пускатель серии ПМЕ–114 с тепловым реле ТРН–8.

Определим номинальный ток теплового реле ТРН–8, соблюдая условие $I_{m_{H_3} \geq I_{pacq}}$.

Учитывая то, что $P_{H\partial} = 4\kappa Bm$ получим:

$$I_{pacu} = I_{H\partial} = \frac{P_{H\partial}}{\sqrt{3} \cdot U_H \cdot \eta_H \cdot \cos(\varphi)} \cdot 10^3 = \frac{4}{\sqrt{3} \cdot 380 \cdot 0.84 \cdot 0.84} \cdot 10^3 = 8.6A$$

Таким образом, выбираем I_{mh9} =10A из выше приведенного условия.

Характеристика магнитного пускателя ПМЕ-114 показана в таблице П.7.3.1.

Таблица П.7.3.1

Номинальный ток. А, при напряжении 380В	Количество Замыкаю- щих	Размыка- ющих	Наличие теплового реле	Предель- ный включае- мый и отключа- емый ток.	Номиналь- ная мощность катушки, Вт
10	4	4	Есть	100	6

Для защиты двигателя от токов короткого замыкания используем плавкий предохранитель без наполнителя, разборный, токоограничивающий типа $\Pi P - 2$ т.к. именно он нашел в отраслях наибольшее применение.

Определим номинальный ток плавкой вставки (I_{gc}) учтя

соотношения
$$\frac{I_{nyc\kappa}}{I_{H\partial}} = 6$$
.

$$I_{NVCK} = 6 \cdot I_{H\partial} = 6 \cdot 8.6 = 51.6A,$$

$$I_{BC} \ge \frac{I_{nyc\kappa}}{2.5} = \frac{51.6}{2.5} = 20.64A$$

следовательно I_{ec} ≥ 20.64A .

Из таблиц Π .5 выбираем ближайший номинальный ток плавкой вставки I_{ec} = 25A .

Таким образом, выбираю предохранитель ПР–2–60. Характеристика указана в таблице П.7.3.2.

Таблица П.7.2

Номинальное напряжение, В	Номинальный ток, А
-500	60

Защита схемы управления.

Определим номинальный ток катушки:

$$I_{HK} = \frac{P_{HK}}{U_H} = \frac{6}{380} = 0.015 A$$
, где P_{HK} — номинальная мощность катушки (см. таблица 2)

Определяем номинальный ток плавкой ставки:

$$I_{HNB} = (2.5 \div 3) \cdot I_{HK} = 2.5 \cdot 0.018 = 0.039A$$

Выбираем из таблицы ближайший больший номинальный ток плавкой вставки: $I_{HRB} = 0.15A$. Таким образом, выбираю предохранитель для схемы управления ПК–45. Характеристика указана в таблице П.7.3.3.

Таблица П.7.3.3

Напряжение, В	Номинальный ток,	Номинальный ток плавкой	
600	5	0,15	

Для пуска электродвигателя, использую кнопочную станцию

управления КУ120. Характеристика представлена в таблице П.7.3.4.

Таблица П.7.3.4

Номинальное напряжение, В	Номинальный ток, А	
~380	4	

П.7.4. Схема автоматизированного управления двигателя

На рисунке П.7.5 представлена схема запуска асинхронного двигателя с короткозамкнутым ротором. Описания обозначений на схеме представлено в таблице П.7.4.1.

Рис. П.7.5. Схема автоматизированного управления двигателя.

При нажатии кнопки SB2 (пуск) катушка контактора KM получает питание, контактор срабатывает, замыкая свои силовые контакты и двигатель разгоняется, выходя на номинальный режим работы. При увеличении тока в цепи до номинального значения

срабатывает предохранитель. При нажатии кнопки SB1 (стоп) KM, разрывается цепь катушки контактора двигатель И останавливается цепь управления разрывается, T.K. a управления приходит в первоначальное состояние. Для тепловой защиты двигателя установлено реле.

Таблица П.7.4.1

Обозначение на схеме	Наименование
КК	Тепловое реле
KM	Пускатель магнитный серии ПМЕ- 114
M	Двигатель 4A100L4Y3
SB1, SB2	Пост управления кнопочный КУ120