Завдання до контрольної роботи з дисципліни:

«Об'єктно - орієнтоване програмування в електроприводі»

для студентів спеціальності ЕСА заочної форми навчання Контрольные работы ставят своей целью освоение техники выполнения расчетных работ на ПЭВМ: изучение методов программирования функций, операторов присваивания и управления последовательностью вычислений с использованием широкого набора типов данных: целых и вещественных чисел, одномерных и многомерных массивов.

ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ

Каждое выполненное задание должно содержать:

- условие задания, соответствующее варианту;
- блок-схему алгоритма;
- описание используемых переменных с указанием типа и назначения в программе;
- листинг программы с результатами пробного выполнения.

Контрольные работы выполняются на листах формата А4 (в виде твердой копии электронного варианта), скрепленных между собой.

ТРЕБОВАНИЯ К БЛОК-СХЕМАМ

В таблице 1.1 представлены элементы блок-схемы, использование которых допустимо при выполнении контрольных работ

Таблица 1.1

таолица т.т		
Имя блока	Вид блока	Действие
Начало/конец процесса	Начало	Начало/завершение программы
Действие	A=4 B=C*D	Выполнение операций с данными
Ввод/вывод	Ввод А Z[5]	Ввод/вывод данных
условие	A>5	Проверка условия (ветвление программы)
Цикл	i=0,9	Циклическое выполнение действий

Продолжение таблицы 1.1

Подпрограмма	Delay 2c	Предопределенный процесс
Соединитель	1	Соединение разнесенных частей схемы

Задание № 1 Теоретический вопрос

- 1. Парадигмы программирования. Объектно-ориентированное программирование. Объекты и классы. Абстракция и иерархия.
- 2. Принципы объектно-ориентированного программирования.
- 3. Пример проектирования совокупности классов. Абстрактные типы данных.
- 4. Классы и объекты в языке С++.
- 5. Создание, уничтожение объектов и классы памяти.
- 6. Статические члены класса. Конструкторы.
- 7. Перегруженные методы. Дружественные функции.
- 8. Наследование. Открытое и закрытое наследование.
- 9. Виртуальные функции. Абстрактные классы.
- 10. Шаблоны функций. Шаблонные классы.
- 11. Алфавит языка Си. Базовые типы данных. Привести примеры объявления переменных разных типов.
- 12.Область видимости и время жизни переменных.
- 13. Операции Си, их использование и приоритеты.
- 14. Операторы ветвления, цикла. Примеры.
- 15. Условная тернарная операция. Операторы перехода циклических и разветвляющихся вычислительных процессов. Примеры.
- 16. Массивы в Си: определение массивов в программе, методы поиска элементов массива.
- 17.Понятие указателя в Си, объявление, определение, основные операции с указателями.
- 18. Понятие класса, объявление, определение. Объекты в Си. Интерфейс класса.
- 19.Параметры и аргументы функций. Аргументы по умолчанию. Области видимости переменных.
- 20.Особенности обработки многомерных массивов. Примеры объявления и обращения к элементам многомерных массивов. Выделение памяти под массивы.
- 21.Оператор выбора switch правила применения, объявления. Примеры. Сравнительный анализ с оператором if-else.
- 22. Оператор цикла for синтаксис объявления, элементы, инициализация. Примеры использования. Бесконечный цикл и необходимость его применения.
- 23. Функции ввода/вывода. Особенности их применения для линейных и циклических вычислительных процессов. Синтаксис объявления.
- 24. Типы вычислительных процессов в Си, особенности их применения. Примеры.

- 25.Перегрузка функций. Конструкторы. Деструкторы.
- 26. Конструкторы с параметрами. Введение в наследование.
- 27. Виртуальные функции.
- 28. Указатели на объекты.
- 29. Область видимости и время жизни переменных.
- 30. Модули. Многомодульное программирование.
- 31. Рекурсивные алгоритмы. Перегрузка функций.
- 32. Функции ввода/вывода printf(), scanf(). Линейные вычислительные процессы.
- 33. Разработка программ со скалярными типами данных.
- 34. Операции С, их приоритеты и использование. Преобразование типов.
- 35. Разработка программ с функциями. Объявление, определение и вызов функций.
- 36. Массивы. Селективная обработка массивов.
- 37. Использование библиотечных функций для работы с символьными данными.
- 38. Вложенные циклы. Многомерные массивы. Массивы указателей.
- 39. Использование функций высокого и низкого уровня для работы с потоками (файлами).
- 40. Разработка программ с многофайловой структурой. Заголовочные файлы.
- 41. Инкапсуляция. Управление доступом к членам класса. Классы памяти для объектов.
- 42. Использование наследования для создания иерархии классов. "Друзья" классов (friend).
- 43. Использование виртуальных функций и указателей для работы с объектами классов.
- 44. Краткий обзор языка Java. Классы и объекты в языке Java.
- 45. Пакеты языка Java. Управление доступом в пакетах. Интерфейсы.
- 46. Динамические структуры данных (одно и многонаправленные списки).

Задание № 2 линейный вычислительный процесс

Вычислить h=f1, a=f2, b=f3, c=f4. Значения функций приведены в таблицах $2.1\ \text{и}\ 2.2.$

Таблица 2.1

11111		
n1	f1	f2
0	$a^2+b^2+c^2-6a+8b+10c+1$	x^2e^{-x}
1	$5a^2 + 6b^2 + 7c^2 - 4ab + 4ac - 10a$	$\sin^2 x + x^{1/4}$
2	$2a^2 + 5b^2 + 20ab + 4ac + 16bc$	$\frac{1}{1+x^2} \operatorname{tgx}$
3	$a^2-2b^2-c^2+4ab-8ac-6c$	$\frac{x}{1-x^2}\ln(x)$
4	$2a^2-5b^3+ac+5ab-8ac+6$	$\frac{3x+1}{2+x^3} \ln^{\frac{1}{2}} x$
5	$b^2-c^2+4ab-4ac+2c+b$	$\sin^3 x - 5\sqrt{x}$
6	$4a^2+2b^2+3c^2+4ac-4b$	$x^5 \sin^2 x + x $
7	b ² -c ² -4ab-4ac-3	$x^3 \sin x + \ln x^2$
8	$7b^2-7c^2-8cb+8ac$	$ \ln \frac{1+x}{1-x} $
9	$4a^2+2b^2+3c^2+4ab-10a+4b$	x^3-3x^2

Таблица 2.2

Таолица 2.2			
n2	f3	f4	X
0	$\ln^2 x + \sqrt{x + \sqrt[3]{x}}$	$\cos^2 x + 5x^{1/5}$	7,2
1	$e^{-\frac{1}{x^2}}$	$tgx - 8x^3$	2,1
2	$\ln x - \sqrt{x}$	$\frac{2x-1}{2} + \sqrt[3]{x^2}$ $x^4 - 3x^2 + 17$	5,1
3	$\sqrt{x} + e^{2x}$	$x^4 - 3x^2 + 17$	3,1
4	$x\sqrt{x\sqrt{x}}$	$\frac{x}{\sqrt{1+x^2}}$	0,8
5	$e^{-x} + \sqrt[4]{x}$	$\ln(x^3 + x^2)$	0,5
6	$x\sqrt{1+x^2}$	$\sin(x+\pi/8)$	2,5
7	$x^3\sqrt{1+x^2}$	$\sin^2 x - x^{2/5}$	2,1
8	$x^3e^x - e^{-x}$	$x^2\cos 3x$	1,1
9	$\frac{\sqrt{x}}{4x + x^2}$	$e^{x} - e^{-x} + 8x^{1/3}$	5,1

Пример выполнения задания

Задание. Вычислить h=f1, a=f2, b=f3, c=f4, если

```
f1 = 3a^2 - 2b^2 - c^2 + 4ab - 8ac + 6
f2 = (3x-1)\ln^2 x/x^5
                                                 Начало
f3 = \ln x + x^{1/2}
f4 = \cos^2 x + 5x^{1/5}
                                                 x=5.4
x = 5.4
#include <stdio.h>
                                              c=cos^2x+5x^{1/5}
#include <math.h>
#include <conio.h>
                                               b=lnx+x^{1/2}
void main(void)
                                                a=(3x-1)
                                                 ln^2x/x^5
{
  float x,a,b,c,h;
                                               h=3a^2-2b^2-
  clrscr();
                                              c^2+4ab-8ac+6
  x=5.4;
  a=(3*x-1)/pow(x,5)*pow(log(x),2);
                                                 Вывод
  b=log(x)+pow(x,1/5);
                                                a,b,c,h
  c=pow(cos(x), 2) + 5*pow(x, 1/5);
  h=3*a*a-2*b*b-c*c+4*a*b-8*a*c+6;
  printf("x=%f\n",x);
                                                 Конец
  printf("a=%f b=%f c=%f\n",a,b,c);
  printf("h=%f",h);
}
```

Результат работы программы:

```
x=5.400000
a=0.009414 b=2.686399 c=5.402835
h=-37.929596
```

Задание № 3 РАЗВЕТВЛЯЮЩИЙСЯ ВЫЧИСЛИТЕЛЬНЫЙ ПРОЦЕСС

Вычислить Y=f(x), f1(z), если z < 0; f2(z), если $0 \le z \le 8$; f3(z), если $z \ge 8$.

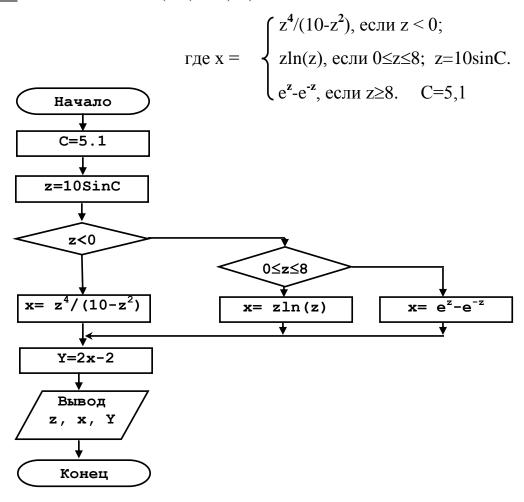

z=10sinC. Варианты заданий приведены в таблице 3.3.и 3.4.

Таблица 3.3

Таолица 5.5			
f(x)	f1(z)		
$x^2 + 8x - 6$	$ \begin{array}{c} z^3 - 3z^2 \\ e^{-z} \end{array} $		
$x^3 \ln x^2$	e^{-z}		
$\frac{x^4}{x-1} + x $	$\sin^2 z$		
$s \ln(4x + 8)^2$	$\frac{z-1}{2+z^2}$		
$\ln^2(x^2 + \sqrt{x^2 + 2})$	$ \frac{z-1}{2+z^2} $ $ \frac{z^2-1}{8+z^2} $ $ \frac{3z-1}{z^5} $		
$\ln \sqrt{x^3 + 8}$	$\frac{3z-1}{z^5}$		
$\frac{1+x^4}{1+x^3}$	$ \ln \frac{1+z}{1-z} $		
$\frac{x^2}{x^3-4}$	$z\sin(z+2)$		
$x^2 \ln x + x^3 $	$x^3 \ln z $		
$\sin x + e^{-2x}$	$\sin^3 z$		

Таблица 3.4

Таолица 3.4		1	
n1	f2(z)	f3(z)	C
0	z sin z	$e^{z}-e^{-z}$	4,3
1	ln z	$\cos z + z^2$	5,4
2	$e^{-\frac{1}{Z}}$	$\frac{z}{\sqrt{1+z^2}}$	2,1
3	$\ln z + 8$	tgz	5,1
4	$\sqrt{\mathrm{z}}$	$z^4 - 3z^2 + 17$	1,3
5	$z\sqrt{z\sqrt{z}}$	$ln(z^3+z^2)$	5,6
6	$e^{-z} + e^{2z}$	$\sin^3 z$	0,5
7	$z\sqrt{1+z^2}$	$\sin^2(z+\pi)$	2,5
8	z^3e^3	$z^2\cos 3z$	2,1
9	$\frac{z}{8+4z}$	$\frac{2z-1}{z}$	1,1


```
#include <stdio.h>
#include <math.h>
void main(void)
{ float C,z,x,Y;
    clrscr();
    C=5.1;
    z=10*sin(C);
    if(z<0) x=pow(z,4)/(10-z*z);
    else
        if(z>=0 && z<=8) x=z*log(z);
        else x=exp(z)-exp(-z);
    Y=pow(log(x+pow(x*x*x+1,1/2)),2);
    printf("C=%f z=%f\n",C,z);
    printf("x=%f Y=%f\n",x,Y);
}</pre>
```

Результат работы программы:

log: DOMAIN error pow: OVERFLOW error C=5.100000 z=-9.258147 x=-97.034065 Y=-NAN

программа выдала ошибку при нахождении квадратного корня из отрицательного числа

Задание № 4 ЦИКЛИЧЕСКИЙ ВЫЧИСЛИТЕЛЬНЫЙ ПРОЦЕСС. ОБРАБОТКА ОДНОМЕРНЫХ МАССИВОВ

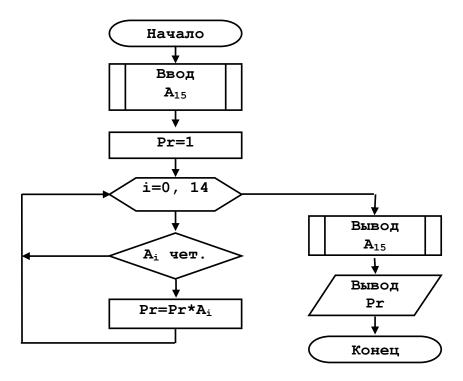

Обработать одномерный массив в соответствии с условием, приведенным в таблице 4.5.

Таблица 4.5

n1	Действие	n2	Элементы массива
0	найти сумму	0	положительные
1	вычислить произведение	1	нечетные
2	определить количество	2	четные
3	вычислить среднее арифмет-ое	3	отрицательные
4	найти сумму	4	четные положительные
5	определить количество	5	четные отрицательные
6	найти сумму	6	нечетные положительные
7	вычислить произведение	7	нечетные отрицательные
8	определить количество	8	значения которых больше 48
9	вычислить сумму	9	значения которых меньше 134

Пример выполнения задания

Задание. Вычислить произведение четных элементов массива


```
#include <stdio.h>
#include <conio.h>
void main(void) {
   int A[15],i,Pr;
   clrscr();
   printf("Ввод массива A[15]\n");
   for(i=0;i<15;i++) scanf("%d",&A[i]);
   Pr=1;</pre>
```

```
for(i=0;i<15;i++)
    if(A[i]%2==0) Pr*=A[i];
    clrscr();
    printf("Исходный массив\n");
    for(i=0;i<15;i++) printf(" %d ",A[i]);
    printf("\n Произведение четных Pr=%d\n",Pr);
}
```

Результат работы программы:

Исходный массив

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 Произведение четных Pr=18432

Задание № 5 ФУНКЦИИ

Выполнить задание №1, но для вычисления f1, f2, f3, f4 задать функции.

Пример выполнения задания

```
Задание. Вычислить h=f1, a=f2, b=f3, c=f4, если
```

```
f1 = 3a^2 - 2b^2 - c^2 + 4ab - 8ac + 6
f2 = (3x-1)\ln^2 x/x^5
f3 = lnx + x^{1/2}
f4 = \cos^2 x + 5x^{1/5}
x = 5.4
#include <stdio.h>
#include <math.h>
#include <conio.h>
float f1(float a,float b,float c)
{ return 3*a*a-2*b*b-c*c+4*a*b-8*a*c+6;}
float f2(float x)
{ return (3*x-1)/pow(x,5)*pow(log(x),2);}
float f3(float x)
{ return log(x) + pow(x, 1/5);}
float f4(float x)
{ return pow(cos(x),2)+5*pow(x,1/5);}
void main(void)
{
  float x,a,b,c,h;
  clrscr();
  x=5.4;
  a=f2(x);
  b=f3(x);
  c=f4(x);
  h=f1(a,b,c);
  printf("x=%f\n",x);
  printf("a=%f b=%f c=%f\n",a,b,c);
  printf("h=%f",h);
}
Результат работы программы:
x=5.400000
```

```
x=5.400000
a=0.009414 b=2.686399 c=5.402835
h=-37.929596
```

Задание № 6

ОБРАБОТКА ДВУМЕРНЫХ МАССИВОВ

Составить программу для обработки массивов согласно индивидуальному заданию приведенному в таблице 6.1.

Таблица 6.1

	Макария ракачи		
Bap	Условие задачи		
1	Дан массив $X(15)$. Сформировать новый массив из четных чисел исходного		
2	Дан массив $X(25)$. Сформировать новый массив из нечетных чисел исходного		
3	Дан массив $D(15)$. Сформировать новый массив из кратных 3 чисел исходного		
4	Дан массив $A(10)$. Сформировать новый массив из отрицательных чисел		
	исходного		
5	Дан массив $Z(15)$. Сформировать новый массив из положительных четных		
	чисел исходного		
6	Дан массив $X(25)$. Сформировать новый массив из чисел исходного, лежащих		
	в интервале [-3,7]		
7	Дан массив $Y(10)$. Сформировать новый массив из нечетных положительных		
	чисел исходного		
8	Дан массив $D(12)$. Сформировать новый массив из положительных кратных 3		
	чисел исходного		
9	Дан массив $A(8)$. Сформировать новый массив из отрицательных четных чисел		
	исходного		
10	Дан массив $C(15)$. Сформировать новый массив из больших 8 чисел исходного		
11	Дан массив $B(21)$. Сформировать новый массив из кратных 4 чисел исходного		
12	Дан массив $X(8)$. Сформировать новый массив из отрицательных не кратных 3		
	чисел исходного		
13	Дан массив $G(9)$. Сформировать новый массив из четных чисел исходного		
	массива, стоящих на нечетных местах		
14	Дан массив $Y(15)$. Сформировать новый массив из нечетных, кратных 3 чисел		
	исходного		
15	Дан массив $A(18)$. Сформировать новый массив из нечетных, кратных 5 чисел		
4 -	исходного		
16	Дан массив $Z(10)$. Сформировать новый массив из четных чисел исходного,		
1.7	лежащих в интервале [1,12]		
17	Дан массив $A(11)$. Сформировать новый массив из нечетных чисел исходного,		
1.0	лежащих в интервале [-3,15]		
18	Дан массив В(10). Сформировать новый массив из номеров отрицательных		
10	четных чисел исходного		
19	Дан массив $A(8)$. Сформировать новый массив из номеров отрицательных инфертицурический из номеров отрицательных		
20	нечетных чисел исходного Дан массив $C(12)$. Сформировать новый массив из отрицательных чисел		
20	исходного, стоящих на четных местах		
21	Дан массив $F(13)$. Сформировать новый массив из отрицательных чисел		
<i>4</i> 1	исходного, стоящих на нечетных местах		
22	Дан массив $H(12)$. Сформировать новый массив из положительных чисел		
22	исходного, стоящих на четных местах		
	neroduoto, etorium nu terribir meetur		

23	Дан массив $V(19)$. Сформировать новый массив из отрицательных чисел
	исходного, лежащих в диапазоне [-20,-5]
24	Дан массив $N(11)$. Сформировать новый массив из отрицательных кратных 5
	чисел исходного
25	Дан массив $K(15)$. Сформировать новый массив из положительных чисел
	исходного, стоящих на нечетных местах
26	Дан массив $Y(11)$. Сформировать новый массив из отрицательных не кратных
	5 чисел исходного
27	Дан массив $Z(14)$. Сформировать новый массив из положительных кратных 5
	чисел исходного
28	Дан массив $R(13)$. Сформировать новый массив из отрицательных кратных 10
	чисел исходного
29	Дан массив $N(11)$. Сформировать новый массив из отрицательных кратных 8
	чисел исходного
30	Дан массив $A(15)$. Сформировать новый массив из отрицательных больше 5
30	чисел исходного
31	
31	Дан массив $Z(12)$. Сформировать новый массив из положительных больше 10
22	четных чисел исходного
32	Дан массив $D(10)$. Сформировать новый массив из положительных кратных 4
22	чисел исходного
33	Дан массив $A(18)$. Сформировать новый массив из отрицательных четных по
2.4	модулю больших 6 чисел исходного
34	Дан массив $Z(20)$. Сформировать новый массив из нечетных чисел исходного,
2.5	лежащих в интервале [3,15]
35	Дан массив $A(13)$. Сформировать новый массив из четных чисел исходного,
2.5	лежащих в интервале [-5,25]
36	Дан массив $B(17)$. Сформировать новый массив из номеров отрицательных
	четных чисел исходного
37	Дан массив $A(9)$. Сформировать новый массив из положительных индексов
•	отрицательных нечетных чисел исходного
38	Дан массив $C(15)$. Сформировать новый массив из отрицательных чисел
_	исходного, стоящих на нечетных местах
39	Дан массив $F(24)$. Сформировать новый массив из отрицательных чисел
	исходного, стоящих на местах, кратных 3
40	Дан массив $D(19)$. Сформировать новый массив из отрицательных кратных 7
	чисел исходного
42	Дан массив $A(10)$. Сформировать новый массив из отрицательных чисел
	исходного по модулю больших 3
43	Дан массив $Z(15)$. Сформировать новый массив из положительных больших 8
	четных чисел исходного
44	Дан массив $X(25)$. Сформировать новый массив из положительных чисел
	исходного, лежащих в интервале [-2,17]
45	Дан массив $Z(14)$. Сформировать новый массив из положительных кратных 5
	чисел исходного
46	Дан массив $R(13)$. Сформировать новый массив из отрицательных кратных 4 и
	больших 25 чисел исходного

Задание № 7

Тест

Каков будет результат операции !а, если а имеет значение 2?
1) 0
2) -2
3) 1
Как правильно записать бесконечный цикл?
1) for (;;) { }
2) for () { }
3) while (i++) { }
Сколько уровней вложенности функций может быть в программе на языке С?
1) один
2) два
3) сколько угодно
4) функции не могут быть вложены друг в друга
Какая конструкция позволяет передать в функцию одну строку матрицы?
1) никакая
2) a
3) *a
4) a[i]
5) $a[i][j]$
Как правильно ввести значение в переменную int n? 1) scanf("%d", n);
2) scanf("%d", &n);
3) scanf("%n", &n);
4) scanf("%x", &n);
Какую директиву нужно использовать для подключения внешних библиотек?
1) #define
2) #include
3) #inside
4) #describe
Какая библиотека содержит функции ввода-вывода?
1) stdio
2) math
3) iostd
Какая функция используется для вывода на экран значений переменных и
текстовых констант?
1) printf()
2) scanf()
3) fprint()
Массив – это тип данных, предназначенный для
1) хранения однотипных данных в виде неупорядоченного набора ячеек
2) хранения разнотипных данных в виде неупорядоченного набора ячеек
3) хранения однотипных данных в виде упорядоченного набора ячеек
Каким символом обозначается операция взятия адреса для переменной?
1) *
2) &
3) #

Для чего используется спецификация класса памяти extern? 1) чтобы сделать внутреннюю переменную внешней 2) чтобы сослаться на переменную, объявленную в другом файле 3) чтобы сделать переменную видимой во всех файлах программы Каков будет результат операции b = a++;, если а имеет значение 0? 1) никакой 2) 0 3) 1 Сколько типов в стандарте языка Си? 1)8 2) 5 3) 4 4) 12 Какая функция используется для ввода с клавиатуры значений переменных? 1) printf() 2) scanf() 3) fprint() Сколько ошибок содержится в следующей программе? void main(vid) { int a, b; printf("input a="); scanf("%f", a) printf("input b="); scanf("%d", &b); c=a+b; printf("a+b=%c, c");

Для чего используются операторы ветвления и выбора?

- 1) Для того, чтобы, в зависимости от истинности некоторого условия, несколько раз выполнить один и тот же оператор или серию операторов
- 2) Для того, чтобы присвоить переменной некоторое значение

1) 4 2) 5 3) 6

3) Для проверки некоторого условия и в зависимости от его истинности выполнения того или иного оператора или серии операторов